Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Algebraic Multigrid Methods via Artificial Neural Networks (2111.01629v2)

Published 2 Nov 2021 in math.NA and cs.NA

Abstract: We present a novel deep learning-based algorithm to accelerate - through the use of Artificial Neural Networks (ANNs) - the convergence of Algebraic Multigrid (AMG) methods for the iterative solution of the linear systems of equations stemming from finite element discretizations of Partial Differential Equations (PDE). We show that ANNs can be successfully used to predict the strong connection parameter that enters in the construction of the sequence of increasingly smaller matrix problems standing at the basis of the AMG algorithm, so as to maximize the corresponding convergence factor of the AMG scheme. To demonstrate the practical capabilities of the proposed algorithm, which we call AMG-ANN, we consider the iterative solution of the algebraic system of equations stemming from finite element discretizations of two-dimensional model problems. First, we consider an elliptic equation with a highly heterogeneous diffusion coefficient and then a stationary Stokes problem. We train (off-line) our ANN with a rich dataset and present an in-depth analysis of the effects of tuning the strong threshold parameter on the convergence factor of the resulting AMG iterative scheme.

Citations (13)

Summary

We haven't generated a summary for this paper yet.