Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UQuAD1.0: Development of an Urdu Question Answering Training Data for Machine Reading Comprehension (2111.01543v1)

Published 2 Nov 2021 in cs.CL and cs.AI

Abstract: In recent years, low-resource Machine Reading Comprehension (MRC) has made significant progress, with models getting remarkable performance on various language datasets. However, none of these models have been customized for the Urdu language. This work explores the semi-automated creation of the Urdu Question Answering Dataset (UQuAD1.0) by combining machine-translated SQuAD with human-generated samples derived from Wikipedia articles and Urdu RC worksheets from Cambridge O-level books. UQuAD1.0 is a large-scale Urdu dataset intended for extractive machine reading comprehension tasks consisting of 49k question Answers pairs in question, passage, and answer format. In UQuAD1.0, 45000 pairs of QA were generated by machine translation of the original SQuAD1.0 and approximately 4000 pairs via crowdsourcing. In this study, we used two types of MRC models: rule-based baseline and advanced Transformer-based models. However, we have discovered that the latter outperforms the others; thus, we have decided to concentrate solely on Transformer-based architectures. Using XLMRoBERTa and multi-lingual BERT, we acquire an F1 score of 0.66 and 0.63, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Samreen Kazi (1 paper)
  2. Shakeel Khoja (1 paper)
Citations (9)