Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nested Multiple Instance Learning with Attention Mechanisms (2111.00947v3)

Published 1 Nov 2021 in cs.LG and cs.CV

Abstract: Strongly supervised learning requires detailed knowledge of truth labels at instance levels, and in many machine learning applications this is a major drawback. Multiple instance learning (MIL) is a popular weakly supervised learning method where truth labels are not available at instance level, but only at bag-of-instances level. However, sometimes the nature of the problem requires a more complex description, where a nested architecture of bag-of-bags at different levels can capture underlying relationships, like similar instances grouped together. Predicting the latent labels of instances or inner-bags might be as important as predicting the final bag-of-bags label but is lost in a straightforward nested setting. We propose a Nested Multiple Instance with Attention (NMIA) model architecture combining the concept of nesting with attention mechanisms. We show that NMIA performs as conventional MIL in simple scenarios and can grasp a complex scenario providing insights to the latent labels at different levels.

Citations (8)

Summary

We haven't generated a summary for this paper yet.