Piezoelectric Soft Robot Inchworm Motion by Tuning Ground Friction through Robot Shape: Quasi-Static Modeling and Experimental Validation (2111.00944v2)
Abstract: Electrically-driven soft robots based on piezoelectric actuators may enable compact form factors and maneuverability in complex environments. In most prior work, piezoelectric actuators are used to control a single degree of freedom. In this work, the coordinated activation of five independent piezoelectric actuators, attached to a common metal foil, is used to implement inchworm-inspired crawling motion in a robot that is less than 0.5 mm thick. The motion is based on the control of its friction to the ground through the robot's shape, in which one end of the robot (depending on its shape) is anchored to the ground by static friction, while the rest of its body expands or contracts. A complete analytical model of the robot shape, which includes gravity, is developed to quantify the robot shape, friction, and displacement. After validation of the model by experiments, the robot's five actuators are collectively sequenced for inchworm-like forward and backward motion.
- M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner, M. Karpelson, R. J. Wood, and G. M. Whitesides, “A Resilient, Untethered Soft Robot,” Soft Robotics, vol. 1, no. 3, pp. 213–223, sep 2014. [Online]. Available: https://www.liebertpub.com/doi/10.1089/soro.2014.0008
- T. Duggan, L. Horowitz, A. Ulug, E. Baker, and K. Petersen, “Inchworm-Inspired Locomotion in Untethered Soft Robots,” in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, apr 2019, pp. 200–205. [Online]. Available: https://ieeexplore.ieee.org/document/8722716/
- H. Cheng, Z. Zheng, P. Kumar, Y. Chen, and M. Chen, “Hybrid-SoRo: Hybrid Switched Capacitor Power Management Architecture for Multi-Channel Piezoelectric Soft Robot,” in 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, mar 2022, pp. 1338–1344. [Online]. Available: https://ieeexplore.ieee.org/document/9773687/
- H. Cheng, Z. Zheng, P. Kumar, Y. Chen, J. Baek, B. Kim, S. Wagner, N. Verma, J. C. Sturm, and M. Chen, “A Flexible Lightweight 7.4 V Input 300 V to 1500 V Output Power Converter for an Untethered Modular Piezoelectric Soft Robot,” in 2023 IEEE 24th Workshop on Control and Modeling for Power Electronics (COMPEL), 2023, pp. 1–7.
- X. Ji, X. Liu, V. Cacucciolo, M. Imboden, Y. Civet, A. El Haitami, S. Cantin, Y. Perriard, and H. Shea, “An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators,” Science Robotics, vol. 4, no. 37, p. eaaz6451, dec 2019. [Online]. Available: https://robotics.sciencemag.org/lookup/doi/10.1126/scirobotics.aaz6451
- Y. Wu, J. K. Yim, J. Liang, Z. Shao, M. Qi, J. Zhong, Z. Luo, X. Yan, M. Zhang, X. Wang, R. S. Fearing, R. J. Full, and L. Lin, “Insect-scale fast moving and ultrarobust soft robot,” Science Robotics, vol. 4, no. 32, p. eaax1594, jul 2019. [Online]. Available: https://robotics.sciencemag.org/lookup/doi/10.1126/scirobotics.aax1594
- N. T. Jafferis, E. F. Helbling, M. Karpelson, and R. J. Wood, “Untethered flight of an insect-sized flapping-wing microscale aerial vehicle,” Nature, vol. 570, no. 7762, pp. 491–495, jun 2019. [Online]. Available: http://www.nature.com/articles/s41586-019-1322-0
- A. Dashtpour, “https://www.instagram.com/p/COvZDT_qwac/.” [Online]. Available: https://www.instagram.com/p/COvZDT_qwac/
- Z. Zheng, P. Kumar, Y. Chen, H. Cheng, S. Wagner, M. Chen, N. Verma, and J. C. Sturm, “Model-Based Control of Planar Piezoelectric Inchworm Soft Robot for Crawling in Constrained Environments,” in 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft). IEEE, apr 2022, pp. 693–698. [Online]. Available: https://ieeexplore.ieee.org/document/9762147/
- B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. Whitesides, “Pneumatic Networks for Soft Robotics that Actuate Rapidly,” Advanced Functional Materials, vol. 24, no. 15, pp. 2163–2170, apr 2014. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/adfm.201303288
- R. Das, S. P. M. Babu, F. Visentin, S. Palagi, and B. Mazzolai, “An earthworm-like modular soft robot for locomotion in multi-terrain environments,” Scientific Reports, vol. 13, no. 1, pp. 1–14, 2023. [Online]. Available: https://doi.org/10.1038/s41598-023-28873-w
- L. Xu, R. J. Wagner, S. Liu, Q. He, T. Li, W. Pan, Y. Feng, H. Feng, Q. Meng, X. Zou, Y. Fu, X. Shi, D. Zhao, J. Ding, and F. J. Vernerey, “Locomotion of an untethered, worm-inspired soft robot driven by a shape-memory alloy skeleton,” Scientific Reports, vol. 12, no. 1, pp. 1–16, 2022.
- T. Du, L. Sun, and J. Wan, “A Worm-like Crawling Soft Robot with Pneumatic Actuators Based on Selective Laser Sintering of TPU Powder,” Biomimetics, vol. 7, no. 4, 2022.
- E. B. Joyee and Y. Pan, “A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation,” Soft Robotics, vol. 6, no. 3, pp. 333–345, 2019.
- S. Ijaz, H. Li, M. C. Hoang, C. S. Kim, D. Bang, E. Choi, and J. O. Park, “Magnetically actuated miniature walking soft robot based on chained magnetic microparticles-embedded elastomer,” Sensors and Actuators, A: Physical, vol. 301, p. 111707, 2020. [Online]. Available: https://doi.org/10.1016/j.sna.2019.111707
- K. Maeda, H. Shinoda, and F. Tsumori, “Miniaturization of worm-type soft robot actuated by magnetic field,” Japanese Journal of Applied Physics, vol. 59, no. SI, 2020.
- H. Niu, R. Feng, Y. Xie, B. Jiang, Y. Sheng, Y. Yu, H. Baoyin, and X. Zeng, “MagWorm: A Biomimetic Magnet Embedded Worm-Like Soft Robot,” Soft Robotics, vol. 8, no. 5, pp. 507–518, oct 2021. [Online]. Available: https://www.liebertpub.com/doi/10.1089/soro.2019.0167
- C. Ahn, X. Liang, and S. Cai, “Bioinspired Design of Light-Powered Crawling, Squeezing, and Jumping Untethered Soft Robot,” Advanced Materials Technologies, vol. 4, no. 7, pp. 1–9, 2019.
- M. Calisti, G. Picardi, and C. Laschi, “Fundamentals of soft robot locomotion,” Journal of The Royal Society Interface, vol. 14, no. 130, p. 20170101, may 2017. [Online]. Available: https://royalsocietypublishing.org/doi/10.1098/rsif.2017.0101
- H. H. Hariri, G. S. Soh, S. Foong, and K. Wood, “Locomotion Study of a Standing Wave Driven Piezoelectric Miniature Robot for Bi-Directional Motion,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 742–747, jun 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7855815/
- R. Xie, M. Su, Y. Zhang, M. Li, H. Zhu, and Y. Guan, “PISRob: A Pneumatic Soft Robot for Locomoting Like an Inchworm,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, may 2018, pp. 3448–3453. [Online]. Available: https://ieeexplore.ieee.org/document/8461189/
- Z. Zheng, P. Kumar, Y. Chen, H. Cheng, S. Wagner, M. Chen, N. Verma, and J. C. Sturm, “Scalable Simulation and Demonstration of Jumping Piezoelectric 2-D Soft Robots,” in 2022 International Conference on Robotics and Automation (ICRA). IEEE, may 2022, pp. 5199–5204. [Online]. Available: https://ieeexplore.ieee.org/document/9811927/
- J.-S. Koh and K.-J. Cho, “Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 419–429, apr 2013. [Online]. Available: http://ieeexplore.ieee.org/document/6269102/
- Y. Wu, K. Y. Ho, K. Kariya, R. Xu, W. Cai, J. Zhong, Y. Ma, M. Zhang, X. Wang, and L. Lin, “PRE-curved PVDF/PI unimorph structures for biomimic soft crawling actuators,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS), vol. 2018-Janua, no. January. IEEE, jan 2018, pp. 581–584. [Online]. Available: https://ieeexplore.ieee.org/document/8346620/
- J. Guo, C. Xiang, A. Conn, and J. Rossiter, “All-Soft Skin-Like Structures for Robotic Locomotion and Transportation,” Soft Robotics, vol. 7, no. 3, pp. 309–320, jun 2020. [Online]. Available: https://www.liebertpub.com/doi/10.1089/soro.2019.0059
- J. Huang, Y. Liu, Y. Yang, Z. Zhou, J. Mao, T. Wu, J. Liu, Q. Cai, C. Peng, Y. Xu, B. Zeng, W. Luo, G. Chen, C. Yuan, and L. Dai, “Electrically programmable adhesive hydrogels for climbing robots,” Science Robotics, vol. 6, no. 53, p. eabe1858, apr 2021. [Online]. Available: https://robotics.sciencemag.org/lookup/doi/10.1126/scirobotics.abe1858
- M. P. Murphy and M. Sitti, “Waalbot: An Agile Small-Scale Wall-Climbing Robot Utilizing Dry Elastomer Adhesives,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 3, pp. 330–338, jun 2007. [Online]. Available: http://ieeexplore.ieee.org/document/4244394/
- M. Duduta, D. R. Clarke, and R. J. Wood, “A high speed soft robot based on dielectric elastomer actuators,” in 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, may 2017, pp. 4346–4351. [Online]. Available: http://ieeexplore.ieee.org/document/7989501/
- H. Guo, J. Zhang, T. Wang, Y. Li, J. Hong, and Y. Li, “Design and control of an inchworm-inspired soft robot with omega-arching locomotion,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), no. c. IEEE, may 2017, pp. 4154–4159. [Online]. Available: http://ieeexplore.ieee.org/document/7989477/
- W. K. Wilkie, “NASA MFC piezocomposites: A development history,” in Proceedings of ISMA, vol. 2014, 2005.
- “Smart Material Corp. Sarasota, Florida. Part numbers: M-8514-P1, M-8514-P2.” [Online]. Available: https://www.smart-material.com/MFC-product-mainV2.html
- R. J. Webster and B. A. Jones, “Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review,” The International Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, nov 2010. [Online]. Available: http://journals.sagepub.com/doi/10.1177/0278364910368147
- V. Falkenhahn, A. Hildebrandt, R. Neumann, and O. Sawodny, “Model-based feedforward position control of constant curvature continuum robots using feedback linearization,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2015-June, no. June. IEEE, may 2015, pp. 762–767. [Online]. Available: http://ieeexplore.ieee.org/document/7139264/
- C. Della Santina, A. Bicchi, and D. Rus, “On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1001–1008, apr 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8961972/
- N. Lobontiu, M. Goldfarb, and E. Garcia, “A piezoelectric-driven inchworm locomotion device,” Mechanism and Machine Theory, vol. 36, no. 4, pp. 425–443, apr 2001. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0094114X00000562
- D. Bandopadhya, “Derivation of Transfer Function of an IPMC Actuator Based on Pseudo-Rigid Body Model,” Journal of Reinforced Plastics and Composites, vol. 29, no. 3, pp. 372–390, feb 2010. [Online]. Available: http://journals.sagepub.com/doi/10.1177/0731684408097778
- W.-B. Li, W.-M. Zhang, H.-X. Zou, Z.-K. Peng, and G. Meng, “A Fast Rolling Soft Robot Driven by Dielectric Elastomer,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 4, pp. 1630–1640, aug 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8365835/
- B. A. Jones, R. L. Gray, and K. Turlapati, “Three dimensional statics for continuum robotics,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, oct 2009, pp. 2659–2664. [Online]. Available: http://ieeexplore.ieee.org/document/5354199/
- O. A. Bauchau and J. I. Craig, “Euler-Bernoulli beam theory,” in Structural Analysis. Solid Mechanics and Its Applications, vol 163, 2009, pp. 173–221. [Online]. Available: http://link.springer.com/10.1007/978-90-481-2516-6_5
- M. Weinberg, “Working equations for piezoelectric actuators and sensors,” Journal of Microelectromechanical Systems, vol. 8, no. 4, pp. 529–533, 1999. [Online]. Available: http://ieeexplore.ieee.org/document/809069/
- Z. Zheng, H. Cheng, P. Kumar, S. Wagner, M. Chen, N. Verma, and J. C. Sturm, “Wirelessly-Controlled Untethered Piezoelectric Planar Soft Robot Capable of Bidirectional Crawling and Rotation,” in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, may 2023, pp. 641–647. [Online]. Available: https://ieeexplore.ieee.org/document/10160886/
- H. Cheng, Z. Zheng, P. Kumar, W. Afridi, B. Kim, S. Wagner, N. Verma, J. C. Sturm, and M. Chen, “eViper: A Scalable Platform for Untethered Modular Soft Robots,” mar 2023. [Online]. Available: http://arxiv.org/abs/2303.01676
- X. Liu, M. Song, Y. Fang, Y. Zhao, and C. Cao, “Worm-Inspired Soft Robots Enable Adaptable Pipeline and Tunnel Inspection,” Advanced Intelligent Systems, vol. 4, no. 1, p. 2100128, 2022.
- D. Tanaka, T. Tsukada, M. Furukawa, S. Wada, and Y. Kuroiwa, “Thermal Reliability of Alkaline Niobate-Based Lead-Free Piezoelectric Ceramics,” Japanese Journal of Applied Physics, vol. 48, no. 9, p. 09KD08, sep 2009. [Online]. Available: https://iopscience.iop.org/article/10.1143/JJAP.48.09KD08
- H. Cao and H. Luo, “Elastic, piezoelectric and dielectric properties of pb(mg 1/3 nb 2/3 )o 3 -38%pbtio 3 single crystal,” Ferroelectrics, vol. 274, no. 1, pp. 309–315, 2002. [Online]. Available: https://doi.org/10.1080/00150190213965
- J. Zhong, Q. Zhong, X. Zang, N. Wu, W. Li, Y. Chu, and L. Lin, “Flexible PET/EVA-based piezoelectret generator for energy harvesting in harsh environments,” Nano Energy, vol. 37, no. 1, pp. 268–274, jul 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2211285517303063
- R. K. Katzschmann, A. D. Marchese, and D. Rus, “Hydraulic Autonomous Soft Robotic Fish for 3D Swimming,” in Springer Tracts in Advanced Robotics. Springer, Cham, 2016, vol. 109, pp. 405–420. [Online]. Available: http://link.springer.com/10.1007/978-3-319-23778-7_27
- N. T. Jafferis, H. A. Stone, and J. C. Sturm, “Traveling wave-induced aerodynamic propulsive forces using piezoelectrically deformed substrates,” Applied Physics Letters, vol. 99, no. 11, p. 114102, sep 2011. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.3637635
- L. E. Aygun, P. Kumar, Z. Zheng, T.-S. Chen, S. Wagner, J. C. Sturm, and N. Verma, “Hybrid LAE-CMOS Force-Sensing System Employing TFT-Based Compressed Sensing for Scalability of Tactile Sensing Skins,” IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1264–1276, dec 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8877761/
- L. Aygun, P. Kumar, Z. Zheng, T.-S. Chen, S. Wagner, J. Sturm, and N. Verma, “17.3 Hybrid System for Efficient LAE-CMOS Interfacing in Large-Scale Tactile-Sensing Skins via TFT-Based Compressed Sensing,” in Digest of Technical Papers - IEEE International Solid-State Circuits Conference, vol. 2019-Febru, 2019.
- J. Sturm, Y. Mehlman, L. E. Aygun, C. Wu, Z. Zheng, P. Kumar, S. Wagner, and N. Verma, “(Keynote) Machine Learning and High-Speed Circuitry in Thin Film Transistors for Sensor Interfacing in Hybrid Large-Area Electronic Systems,” ECS Transactions, vol. 92, no. 4, p. 121, jul 2019. [Online]. Available: https://dx.doi.org/10.1149/09204.0121ecst
- Z. Zheng, L. E. Aygun, Y. Mehlman, S. Wagner, N. Verma, and J. C. Sturm, “Analyzing and Increasing Yield of ZnO Thin-Film Transistors for Large-area Sensing Systems by Preventing Process-Induced Gate Dielectric Breakdown,” in 2019 Device Research Conference (DRC), vol. 2019-June. IEEE, jun 2019, pp. 141–142. [Online]. Available: https://ieeexplore.ieee.org/document/9046406/