A moment-matching metric for latent variable generative models (2111.00875v2)
Abstract: It can be difficult to assess the quality of a fitted model when facing unsupervised learning problems. Latent variable models, such as variation autoencoders and Gaussian mixture models, are often trained with likelihood-based approaches. In scope of Goodhart's law, when a metric becomes a target it ceases to be a good metric and therefore we should not use likelihood to assess the quality of the fit of these models. The solution we propose is a new metric for model comparison or regularization that relies on moments. The concept is to study the difference between the data moments and the model moments using a matrix norm, such as the Frobenius norm. We show how to use this new metric for model comparison and then for regularization. It is common to draw samples from the fitted distribution when evaluating latent variable models and we show that our proposed metric is faster to compute and has a smaller variance that this alternative. We conclude this article with a proof of concept of both applications and we discuss future work.
- Goodhart, C.A.: Problems of monetary management: the uk experience. In: Monetary Theory and Practice, pp. 91–121. Palgrave, London (1984) (3) Strathern, M.: ‘improving ratings’: audit in the british university system. European review 5(3), 305–321 (1997) (4) Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014) (5) Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Strathern, M.: ‘improving ratings’: audit in the british university system. European review 5(3), 305–321 (1997) (4) Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014) (5) Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014) (5) Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Strathern, M.: ‘improving ratings’: audit in the british university system. European review 5(3), 305–321 (1997) (4) Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014) (5) Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014) (5) Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014) (5) Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Kingma, D.P.: Variational inference & deep learning : A new synthesis. PhD thesis, Universiteit van Armsterdam (October 2017) (6) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007) (7) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 611–622 (1999) (8) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015). PMLR (9) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017) (10) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Zhao, S., Song, J., Ermon, S.: Infovae: Balancing learning and inference in variational autoencoders. In: Proceedings of the Aaai Conference on Artificial Intelligence, vol. 33, pp. 5885–5892 (2019) (11) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Vahdat, A., Kautz, J.: Nvae: A deep hierarchical variational autoencoder. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA (2020) (12) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. Journal of Machine Learning Research 13(25), 723–773 (2012) (13) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Liu, Q., Lee, J., Jordan, M.: A kernelized stein discrepancy for goodness-of-fit tests. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 276–284. PMLR, New York (2016) (14) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Kanagawa, H., Jitkrittum, W., Mackey, L., Fukumizu, K., Gretton, A.: A kernel stein test for comparing latent variable models. arXiv preprint arXiv:1907.00586 (2019) (15) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Jitkrittum, W., Kanagawa, H., Schölkopf, B.: Testing goodness of fit of conditional density models with kernels. In: Conference on Uncertainty in Artificial Intelligence, pp. 221–230. PMLR, New York (2020) (16) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Anandkumar, A., Foster, D.P., Hsu, D.J., Kakade, S.M., Liu, Y.-k.: A spectral algorithm for latent dirichlet allocation. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc., Red Hook, NY, USA (2012) (17) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. Journal of Machine Learning Research 15(80), 2773–2832 (2014) (18) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Chaganty, A.T., Liang, P.: Estimating latent-variable graphical models using moments and likelihoods. In: International Conference on Machine Learning, pp. 1872–1880 (2014). PMLR (19) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Podosinnikova, A.: On the method of moments for estimation in latent linear models. PhD thesis, PSL Research University (2016) (20) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Rosenthal, J.S.: Monte carlo methods. Lecture notes for course STA2431 (2019) (21) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge university press, Cambridge, England (2014) (22) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Rigollet, P., Hütter, J.-C.: High dimensional statistics. Lecture notes for course 18S997 813, 814 (2015) (23) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Mises, R., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 58–77 (1929) (24) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Harris, C.R., Millman, K.J., der Walt, S.J.v., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del R’ıo, J.F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2 (25) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc., Red Hook, NY, USA (2019) (26) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Beaulac, C.: MEGA for LVGM. GitHub (2021). https://github.com/CedricBeaulac/LVM_Analysis (27) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) (28) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow, vol. 29, pp. 4743–4751. Curran Associates Inc., Red Hook, NY, USA (2016) (29) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996) (30) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for cox’s proportional hazards model via coordinate descent. Journal of Statistical Software 39(5), 1–13 (2011) (31) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010) (32) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Beaulac, C.: Performance and accessibility of statistical learning algorithms for applied data analysis. PhD thesis, University of Toronto (2021) (33) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018) (34) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Akaike, H.: A new look at the statistical model identification. IEEE transactions on automatic control 19(6), 716–723 (1974) (35) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Akaike, H.: Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213 (1998) (36) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012) (37) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018) (38) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10(3), 262–266 (1989) (39) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, Piscataway, New Jersey, pp. 413–422 (2008). IEEE (40) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Keller, F., Muller, E., Bohm, K.: Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88 (41) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)
- Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook, NY, USA (2017)