Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoding of Polar Codes Based on Q-Learning-Driven Belief Propagation (2111.00673v1)

Published 1 Nov 2021 in cs.IT and math.IT

Abstract: This paper presents an enhanced belief propagation (BP) decoding algorithm and a reinforcement learning-based BP decoding algorithm for polar codes. The enhanced BP algorithm weighs each Processing Element (PE) input based on their signals and Euclidean distances using a heuristic metric. The proposed reinforcement learning-based BP decoding strategy relies on reweighting the messages and consists of two steps: we first weight each PE input based on their signals and Euclidean distances using a heuristic metric, then a Q-learning algorithm (QLBP) is employed to figure out the best correction factor for successful decoding. Simulations show that the proposed enhanced BP and QLBP decoders outperform the successive cancellation (SC) and belief propagation (BP) decoders, and approach the SCL decoders.

Citations (1)

Summary

We haven't generated a summary for this paper yet.