Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-attention conformer for context modeling in speech enhancement for ASR (2111.00127v1)

Published 30 Oct 2021 in eess.AS and cs.SD

Abstract: This work introduces \emph{cross-attention conformer}, an attention-based architecture for context modeling in speech enhancement. Given that the context information can often be sequential, and of different length as the audio that is to be enhanced, we make use of cross-attention to summarize and merge contextual information with input features. Building upon the recently proposed conformer model that uses self attention layers as building blocks, the proposed cross-attention conformer can be used to build deep contextual models. As a concrete example, we show how noise context, i.e., short noise-only audio segment preceding an utterance, can be used to build a speech enhancement feature frontend using cross-attention conformer layers for improving noise robustness of automatic speech recognition.

Citations (14)

Summary

We haven't generated a summary for this paper yet.