Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the structure of the affine asymptotic Hecke algebras (2110.15903v6)

Published 29 Oct 2021 in math.RT

Abstract: According to a conjecture of Lusztig, the asymptotic affine Hecke algebra should admit a description in terms of the Grothedieck group of sheaves on the square of a finite set equivariant under the action of the centralizer of a nilpotent element in the reductive group. A weaker form of this statement, allowing for possible central extensions of stabilizers of that action, has been proved by the first named author with Ostrik. In the present paper we describe an example showing that nontrivial central extensions do arise, thus the above weaker statement is optimal. We also show that Lusztig's homomorphism from the affine Hecke algebra to the asymptotic affine Hecke algebra induces an isomorphism on cocenters and discuss the relation of the above central extensions to the structure of the cocenter.

Summary

We haven't generated a summary for this paper yet.