Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

An Effective Image Restorer: Denoising and Luminance Adjustment for Low-photon-count Imaging (2110.15715v2)

Published 29 Oct 2021 in eess.IV and cs.CV

Abstract: Imaging under photon-scarce situations introduces challenges to many applications as the captured images are with low signal-to-noise ratio and poor luminance. In this paper, we investigate the raw image restoration under low-photon-count conditions by simulating the imaging of quanta image sensor (QIS). We develop a lightweight framework, which consists of a multi-level pyramid denoising network (MPDNet) and a luminance adjustment (LA) module to achieve separate denoising and luminance enhancement. The main component of our framework is the multi-skip attention residual block (MARB), which integrates multi-scale feature fusion and attention mechanism for better feature representation. Our MPDNet adopts the idea of Laplacian pyramid to learn the small-scale noise map and larger-scale high-frequency details at different levels, and feature extractions are conducted on the multi-scale input images to encode richer contextual information. Our LA module enhances the luminance of the denoised image by estimating its illumination, which can better avoid color distortion. Extensive experimental results have demonstrated that our image restorer can achieve superior performance on the degraded images with various photon levels by suppressing noise and recovering luminance and color effectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.