Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusing ASR Outputs in Joint Training for Speech Emotion Recognition (2110.15684v2)

Published 29 Oct 2021 in eess.AS, cs.CL, cs.MM, and cs.SD

Abstract: Alongside acoustic information, linguistic features based on speech transcripts have been proven useful in Speech Emotion Recognition (SER). However, due to the scarcity of emotion labelled data and the difficulty of recognizing emotional speech, it is hard to obtain reliable linguistic features and models in this research area. In this paper, we propose to fuse Automatic Speech Recognition (ASR) outputs into the pipeline for joint training SER. The relationship between ASR and SER is understudied, and it is unclear what and how ASR features benefit SER. By examining various ASR outputs and fusion methods, our experiments show that in joint ASR-SER training, incorporating both ASR hidden and text output using a hierarchical co-attention fusion approach improves the SER performance the most. On the IEMOCAP corpus, our approach achieves 63.4% weighted accuracy, which is close to the baseline results achieved by combining ground-truth transcripts. In addition, we also present novel word error rate analysis on IEMOCAP and layer-difference analysis of the Wav2vec 2.0 model to better understand the relationship between ASR and SER.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuanchao Li (24 papers)
  2. Peter Bell (60 papers)
  3. Catherine Lai (24 papers)
Citations (52)