Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric Estimation for I.I.D. Paths of a Martingale Driven Model with Application to Non-Autonomous Financial Models (2110.15637v4)

Published 29 Oct 2021 in math.ST and stat.TH

Abstract: This paper deals with a projection least squares estimator of the function $J_0$ computed from multiple independent observations on $[0,T]$ of the process $Z$ defined by $dZ_t = J_0(t)d\langle M\rangle_t + dM_t$, where $M$ is a continuous and square integrable martingale vanishing at $0$. Risk bounds are established on this estimator, on an associated adaptive estimator and on an associated discrete-time version used in practice. An appropriate transformation allows to rewrite the differential equation $dX_t = V(X_t)(b_0(t)dt +\sigma(t)dB_t)$, where $B$ is a fractional Brownian motion of Hurst parameter $H\in [1/2,1)$, as a model of the previous type. So, the second part of the paper deals with risk bounds on a nonparametric estimator of $b_0$ derived from the results on the projection least squares estimator of $J_0$. In particular, our results apply to the estimation of the drift function in a non-autonomous Black-Scholes model and to nonparametric estimation in a non-autonomous fractional stochastic volatility model.

Summary

We haven't generated a summary for this paper yet.