Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ST-ABN: Visual Explanation Taking into Account Spatio-temporal Information for Video Recognition (2110.15574v1)

Published 29 Oct 2021 in cs.CV

Abstract: It is difficult for people to interpret the decision-making in the inference process of deep neural networks. Visual explanation is one method for interpreting the decision-making of deep learning. It analyzes the decision-making of 2D CNNs by visualizing an attention map that highlights discriminative regions. Visual explanation for interpreting the decision-making process in video recognition is more difficult because it is necessary to consider not only spatial but also temporal information, which is different from the case of still images. In this paper, we propose a visual explanation method called spatio-temporal attention branch network (ST-ABN) for video recognition. It enables visual explanation for both spatial and temporal information. ST-ABN acquires the importance of spatial and temporal information during network inference and applies it to recognition processing to improve recognition performance and visual explainability. Experimental results with Something-Something datasets V1 & V2 demonstrated that ST-ABN enables visual explanation that takes into account spatial and temporal information simultaneously and improves recognition performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Masahiro Mitsuhara (2 papers)
  2. Tsubasa Hirakawa (23 papers)
  3. Takayoshi Yamashita (28 papers)
  4. Hironobu Fujiyoshi (20 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.