Matching coefficients in the series expansions of certain $q$-products and their reciprocals (2110.15546v1)
Abstract: We show that the series expansions of certain $q$-products have \textit{matching coefficients} with their reciprocals. Several of the results are associated to Ramanujan's continued fractions. For example, let $R(q)$ denote the Rogers-Ramanujan continued fraction having the well-known $q$-product repesentation $$R(q)=\dfrac{(q;q5)\infty(q4;q5)\infty}{(q2;q5)\infty(q3;q5)\infty}.$$ If \begin{align*} \sum_{n=0}{\infty}\alpha(n)qn=\dfrac{1}{R5\left(q\right)}=\left(\sum_{n=0}{\infty}\alpha{\prime}(n)qn\right){-1},\ \sum_{n=0}{\infty}\beta(n)qn=\dfrac{R(q)}{R\left(q{16}\right)}=\left(\sum_{n=0}{\infty}\beta{\prime}(n)qn\right){-1}, \end{align*} then \begin{align*} \alpha(5n+r)&=-\alpha{\prime}(5n+r-2) \quad r\in{3,4},\ \beta(10n+r)&=-\beta{\prime}(10n+r-6) \quad r\in{7,9}. \end{align*}