Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting Hamiltonian Cycles in Dirac Hypergraphs (2110.15475v1)

Published 29 Oct 2021 in math.CO

Abstract: For $0\leq \ell <k$, a Hamiltonian $\ell$-cycle in a $k$-uniform hypergraph $H$ is a cyclic ordering of the vertices of $H$ in which the edges are segments of length $k$ and every two consecutive edges overlap in exactly $\ell$ vertices. We show that for all $0\le \ell<k-1$, every $k$-graph with minimum co-degree $\delta n$ with $\delta\>1/2$ has (asymptotically and up to a subexponential factor) at least as many Hamiltonian $\ell$-cycles as in a typical random $k$-graph with edge-probability $\delta$. This significantly improves a recent result of Glock, Gould, Joos, K\"uhn, and Osthus, and verifies a conjecture of Ferber, Krivelevich and Sudakov for all values $0\leq \ell<k-1$.

Summary

We haven't generated a summary for this paper yet.