Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recognizing k-leaf powers in polynomial time, for constant k (2110.15421v1)

Published 28 Oct 2021 in cs.DS

Abstract: A graph $G$ is a $k$-leaf power if there exists a tree $T$ whose leaf set is $V(G)$, and such that $uv \in E(G)$ if and only if the distance between $u$ and $v$ in $T$ is at most $k$. The graph classes of $k$-leaf powers have several applications in computational biology, but recognizing them has remained a challenging algorithmic problem for the past two decades. The best known result is that $6$-leaf powers can be recognized in polynomial time. In this paper, we present an algorithm that decides whether a graph $G$ is a $k$-leaf power in time $O(n{f(k)})$ for some function $f$ that depends only on $k$ (but has the growth rate of a power tower function). Our techniques are based on the fact that either a $k$-leaf power has a corresponding tree of low maximum degree, in which case finding it is easy, or every corresponding tree has large maximum degree. In the latter case, large degree vertices in the tree imply that $G$ has redundant substructures which can be pruned from the graph. In addition to solving a longstanding open problem, we hope that the structural results presented in this work can lead to further results on $k$-leaf powers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Manuel Lafond (44 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.