Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Meta Subspace Optimization (2110.14920v2)

Published 28 Oct 2021 in math.OC, cs.AI, and cs.LG

Abstract: Subspace optimization methods have the attractive property of reducing large-scale optimization problems to a sequence of low-dimensional subspace optimization problems. However, existing subspace optimization frameworks adopt a fixed update policy of the subspace and therefore appear to be sub-optimal. In this paper, we propose a new \emph{Meta Subspace Optimization} (MSO) framework for large-scale optimization problems, which allows to determine the subspace matrix at each optimization iteration. In order to remain invariant to the optimization problem's dimension, we design an \emph{efficient} meta optimizer based on very low-dimensional subspace optimization coefficients, inducing a rule-based method that can significantly improve performance. Finally, we design and analyze a reinforcement learning (RL) procedure based on the subspace optimization dynamics whose learnt policies outperform existing subspace optimization methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.