Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context-Tree-Based Lossy Compression and Its Application to CSI Representation (2110.14748v2)

Published 27 Oct 2021 in cs.IT and math.IT

Abstract: We propose novel compression algorithms for time-varying channel state information (CSI) in wireless communications. The proposed scheme combines (lossy) vector quantisation and (lossless) compression. First, the new vector quantisation technique is based on a class of parametrised companders applied on each component of the normalised CSI vector. Our algorithm chooses a suitable compander in an intuitively simple way whenever empirical data are available. Then, the sequences of quantisation indices are compressed using a context-tree-based approach. Essentially, we update the estimate of the conditional distribution of the source at each instant and encode the current symbol with the estimated distribution. The algorithms have low complexity, are linear-time in both the spatial dimension and time duration, and can be implemented in an online fashion. We run simulations to demonstrate the effectiveness of the proposed algorithms in such scenarios.

Citations (1)

Summary

We haven't generated a summary for this paper yet.