Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Linguistic Distance help Language Classification? Assessing Hawrami-Zaza and Kurmanji-Sorani (2110.14398v1)

Published 27 Oct 2021 in cs.CL

Abstract: To consider Hawrami and Zaza (Zazaki) standalone languages or dialects of a language have been discussed and debated for a while among linguists active in studying Iranian languages. The question of whether those languages/dialects belong to the Kurdish language or if they are independent descendants of Iranian languages was answered by MacKenzie (1961). However, a majority of people who speak the dialects are against that answer. Their disapproval mainly seems to be based on the sociological, cultural, and historical relationship among the speakers of the dialects. While the case of Hawrami and Zaza has remained unexplored and under-examined, an almost unanimous agreement exists about the classification of Kurmanji and Sorani as Kurdish dialects. The related studies to address the mentioned cases are primarily qualitative. However, computational linguistics could approach the question from a quantitative perspective. In this research, we look into three questions from a linguistic distance point of view. First, how similar or dissimilar Hawrami and Zaza are, considering no common geographical coexistence between the two. Second, what about Kurmanji and Sorani that have geographical overlap. Finally, what is the distance among all these dialects, pair by pair? We base our computation on phonetic presentations of these dialects (languages), and we calculate various linguistic distances among the pairs. We analyze the data and discuss the results to conclude.

Summary

We haven't generated a summary for this paper yet.