Multi-fidelity data fusion through parameter space reduction with applications to automotive engineering (2110.14396v3)
Abstract: Multi-fidelity models are of great importance due to their capability of fusing information coming from different numerical simulations, surrogates, and sensors. We focus on the approximation of high-dimensional scalar functions with low intrinsic dimensionality. By introducing a low dimensional bias we can fight the curse of dimensionality affecting these quantities of interest, especially for many-query applications. We seek a gradient-based reduction of the parameter space through linear active subspaces or a nonlinear transformation of the input space. Then we build a low-fidelity response surface based on such reduction, thus enabling nonlinear autoregressive multi-fidelity Gaussian process regression without the need of running new simulations with simplified physical models. This has a great potential in the data scarcity regime affecting many engineering applications. In this work we present a new multi-fidelity approach that involves active subspaces and the nonlinear level-set learning method, starting from the preliminary analysis previously conducted in Romor et al. 2020. The proposed framework is tested on two high-dimensional benchmark functions, and on a more complex car aerodynamics problem. We show how a low intrinsic dimensionality bias can increase the accuracy of Gaussian process response surfaces.
- Upscale (upscaling product development simulation capabilities exploiting artificial intelligence for electric vehicles). https://www.upscaleproject.eu/, 2021. [Online; accessed 2023-01-04].
- Modeling data from computer experiments: an empirical comparison of kriging with MARS and projection pursuit regression. Quality Engineering, 19(4):327–338, 2007. doi:10.1080/08982110701580930.
- Multi-fidelity optimization of super-cavitating hydrofoils. Computer Methods in Applied Mechanics and Engineering, 332:63–85, 2018. doi:10.1016/j.cma.2017.12.009.
- Improving SWATH Seakeeping Performance using Multi-Fidelity Gaussian Process and Bayesian Optimization. Journal of Ship Research, 62(4):223–240, 2018. doi:10.5957/JOSR.11170069.
- Active Manifolds: A non-linear analogue to Active Subspaces. In Proceddings of the 36th International Conference on Machine Learning, ICML 2019, pages 764–772, Long Beach, California, USA, 9–15 June 2019.
- Reversible architectures for arbitrarily deep residual neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.
- Model reduction methods. In E. Stein, R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics, Second Edition, pages 1–36. John Wiley & Sons, Ltd., 2017.
- P. G. Constantine. Active subspaces: Emerging ideas for dimension reduction in parameter studies, volume 2 of SIAM Spotlights. SIAM, -, 2015. doi:10.1137/1.9781611973860.
- P. G. Constantine and P. Diaz. Global sensitivity metrics from active subspaces. Reliability Engineering & System Safety, 162:1–13, 2017. doi:10.1016/j.ress.2017.01.013.
- Accelerating Markov Chain Monte Carlo with Active Subspaces. SIAM Journal on Scientific Computing, 38(5):A2779–A2805, 2016. doi:10.1137/15M1042127.
- A. Damianou and N. Lawrence. Deep Gaussian processes. In Artificial Intelligence and Statistics, pages 207–215, 2013.
- Hull Shape Design Optimization with Parameter Space and Model Reductions, and Self-Learning Mesh Morphing. Journal of Marine Science and Engineering, 9(2):185, 2021. doi:10.3390/jmse9020185.
- A non-intrusive approach for reconstruction of POD modal coefficients through active subspaces. Comptes Rendus Mécanique de l’Académie des Sciences, 347(11):873–881, November 2019. doi:10.1016/j.crme.2019.11.012.
- A Supervised Learning Approach Involving Active Subspaces for an Efficient Genetic Algorithm in High-Dimensional Optimization Problems. SIAM Journal on Scientific Computing, 43(3):B831–B853, 2021. doi:10.1137/20M1345219.
- A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation. Applied Mathematics and Computation, 324:141–155, 2018. doi:10.1016/j.amc.2017.11.039.
- Multi-fidelity optimization via surrogate modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2088):3251–3269, 2007. doi:10.1098/rspa.2007.1900.
- Adaptive Dimensionality Reduction for Fast Sequential Optimization With Gaussian Processes. Journal of Mechanical Design, 141(7):071404, 2019. doi:10.1115/1.4043202.
- GPy. GPy: A Gaussian process framework in Python. http://github.com/SheffieldML/GPy, since 2012.
- E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse problems, 34(1):014004, 2017. doi:10.1088/1361-6420/aa9a90.
- Manifold learning for parameter reduction. Journal of computational physics, 392:419–431, 2019. doi:10.1016/j.jcp.2019.04.015.
- Gaussian processes and kernel methods: A review on connections and equivalences. arXiv preprint arXiv:1807.02582, 2018.
- M. C. Kennedy and A. O’Hagan. Predicting the output from a complex computer code when fast approximations are available. Biometrika, 87(1):1–13, 2000.
- D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on Learning Representations (ICLR), 2015.
- Multifidelity probability estimation via fusion of estimators. Journal of Computational Physics, 392:385–402, 2019. doi:10.1016/j.jcp.2019.04.071.
- Multifidelity Dimension Reduction via Active Subspaces. SIAM Journal on Scientific Computing, 42(2):A929–A956, 2020. doi:10.1137/18M1214123.
- Sparse spectrum Gaussian process regression. The Journal of Machine Learning Research, 11:1865–1881, 2010.
- M. Lázaro-Gredilla and M. K. Titsias. Variational Heteroscedastic Gaussian Process regression. In Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, pages 841–848, Madison, WI, USA, 2011. Omnipress.
- L. Le Gratiet and J. Garnier. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. International Journal for Uncertainty Quantification, 4(5):365–386, 2014. doi:10.1615/Int.J.UncertaintyQuantification.2014006914.
- When Gaussian process meets big data: A review of scalable GPs. IEEE Transactions on Neural Networks and Learning Systems, 2020.
- Active subspaces for shape optimization. In 10th AIAA multidisciplinary design optimization conference, page 1171, 2014. doi:10.2514/6.2014-1171.
- X. Meng and G. E. Karniadakis. A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems. Journal of Computational Physics, 401:109020, 2020. doi:10.1016/j.jcp.2019.109020.
- Reduced-order modeling of vehicle aerodynamics via proper orthogonal decomposition. SAE International Journal of Passenger Cars — Mechanical Systems, 12:225–236, 10 2019. doi:10.4271/06-12-03-0016.
- DIAS: A Data-Informed Active Subspace Regularization Framework for Inverse Problems. Computation, 10(3):38, 2022.
- Derivative-informed projected neural networks for high-dimensional parametric maps governed by pdes. Computer Methods in Applied Mechanics and Engineering, 388:114199, 2022. doi:10.1016/j.cma.2021.114199.
- On active subspaces in car aerodynamics. In 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, page 4294, 2016. doi:10.2514/6.2016-4294.
- Emulation of physical processes with Emukit. In Second Workshop on Machine Learning and the Physical Sciences, NeurIPS, 2019.
- Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., -, 2019.
- Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of the Royal Society A, 473(2198):20160751, 2017. doi:10.1098/rspa.2016.0751.
- Manifold learning for accelerating coarse-grained optimization. Journal of Computational Dynamics, 7(2):511–536, 2020. doi:10.3934/jcd.2020021.
- Inferring solutions of differential equations using noisy multi-fidelity data. Journal of Computational Physics, 335:736–746, 2017. doi:10.1016/j.jcp.2017.01.060.
- Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, 2019. doi:10.1016/j.jcp.2018.10.045.
- Kernel-based active subspaces with application to computational fluid dynamics parametric problems using discontinuous Galerkin method. International Journal for Numerical Methods in Engineering, 123(23):6000–6027, 2022. doi:10.1002/nme.7099.
- A local approach to parameter space reduction for regression and classification tasks. arXiv preprint arXiv:2107.10867, 2021.
- ATHENA: Advanced Techniques for High dimensional parameter spaces to Enhance Numerical Analysis. Software Impacts, page 100133, 2021. doi:10.1016/j.simpa.2021.100133.
- Multi-fidelity data fusion for the approximation of scalar functions with low intrinsic dimensionality through active subspaces. In Proceedings in Applied Mathematics & Mechanics, volume 20. Wiley Online Library, 2021. doi:10.1002/pamm.202000349.
- Basic Ideas and Tools for Projection-Based Model Reduction of Parametric Partial Differential Equations. In P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. H. A. Schilders, and L. M. Silveira, editors, Model Order Reduction, volume 2, chapter 1, pages 1–47. De Gruyter, Berlin, Boston, 2020. doi:10.1515/9783110671490-001.
- Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics. SIAM, 2022. doi:10.1137/1.9781611977257.
- Warped Gaussian processes. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 337–344, -, 2004. MIT Press.
- Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods. In D. Boffi, L. F. Pavarino, G. Rozza, S. Scacchi, and C. Vergara, editors, Mathematical and Numerical Modeling of the Cardiovascular System and Applications, volume 16 of SEMA-SIMAI Series, pages 185–207. Springer International Publishing, -, 2018. doi:10.1007/978-3-319-96649-6_8.
- Enhancing CFD predictions in shape design problems by model and parameter space reduction. Advanced Modeling and Simulation in Engineering Sciences, 7(40), 2020. doi:10.1186/s40323-020-00177-y.
- A multi-fidelity approach coupling parameter space reduction and non-intrusive POD with application to structural optimization of passenger ship hulls. International Journal for Numerical Methods in Engineering, 124(5):1193–1210, 2023. doi:10.1002/nme.7159.
- Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems. Advanced Modeling and Simulation in Engineering Sciences, 5(1):25, Sep 2018. doi:10.1186/s40323-018-0118-3.
- A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics, 12(6):620–631, 1998. doi:10.1063/1.168744.
- Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning series. MIT press Cambridge, MA, -, 2006.
- Sequential Learning of Active Subspaces. Journal of Computational and Graphical Statistics, pages 1–14, 2021. doi:10.1080/10618600.2021.1874962.
- Gradient-based dimension reduction of multivariate vector-valued functions. SIAM Journal on Scientific Computing, 42(1):A534–A558, 2020. doi:10.1137/18M1221837.
- Learning nonlinear level sets for dimensionality reduction in function approximation. In Advances in Neural Information Processing Systems, pages 13199–13208, 2019.