Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

History Determinism vs. Good for Gameness in Quantitative Automata (2110.14238v1)

Published 27 Oct 2021 in cs.FL

Abstract: Automata models between determinism and nondeterminism/alternations can retain some of the algorithmic properties of deterministic automata while enjoying some of the expressiveness and succinctness of nondeterminism. We study three closely related such models -- history determinism, good for gameness and determinisability by pruning -- on quantitative automata. While in the Boolean setting, history determinism and good for gameness coincide, we show that this is no longer the case in the quantitative setting: good for gameness is broader than history determinism, and coincides with a relaxed version of it, defined with respect to thresholds. We further identify criteria in which history determinism, which is generally broader than determinisability by pruning, coincides with it, which we then apply to typical quantitative automata types. As a key application of good for games and history deterministic automata is synthesis, we clarify the relationship between the two notions and various quantitative synthesis problems. We show that good-for-games automata are central for "global" (classical) synthesis, while "local" (good-enough) synthesis reduces to deciding whether a nondeterministic automaton is history deterministic.

Citations (18)

Summary

We haven't generated a summary for this paper yet.