Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Systematic definition and classification of data anomalies in DBMS (English Version) (2110.14230v1)

Published 27 Oct 2021 in cs.DB

Abstract: There is no unified definition of Data anomalies, which refers to the specific data operation mode that may violate the consistency of the database. Known data anomalies include Dirty Write, Dirty Read, Non-repeatable Read, Phantom, Read Skew and Write Skew, etc. In order to improve the efficiency of concurrency control algorithms, data anomalies are also used to define the isolation levels, because the weak isolation level can improve the efficiency of transaction processing systems. This paper systematically studies the data anomalies and the corresponding isolation levels. We report twenty-two new data anomalies that other papers have not reported, and all data anomalies are classified miraculously. Based on the classification of data anomalies, two new isolation levels systems with different granularity are proposed, which reveals the rule of defining isolation levels based on data anomalies and makes the cognition of data anomalies and isolation levels more concise.

Citations (2)

Summary

We haven't generated a summary for this paper yet.