Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed Supervised Object Detection by Transferring Mask Prior and Semantic Similarity (2110.14191v1)

Published 27 Oct 2021 in cs.CV

Abstract: Object detection has achieved promising success, but requires large-scale fully-annotated data, which is time-consuming and labor-extensive. Therefore, we consider object detection with mixed supervision, which learns novel object categories using weak annotations with the help of full annotations of existing base object categories. Previous works using mixed supervision mainly learn the class-agnostic objectness from fully-annotated categories, which can be transferred to upgrade the weak annotations to pseudo full annotations for novel categories. In this paper, we further transfer mask prior and semantic similarity to bridge the gap between novel categories and base categories. Specifically, the ability of using mask prior to help detect objects is learned from base categories and transferred to novel categories. Moreover, the semantic similarity between objects learned from base categories is transferred to denoise the pseudo full annotations for novel categories. Experimental results on three benchmark datasets demonstrate the effectiveness of our method over existing methods. Codes are available at https://github.com/bcmi/TraMaS-Weak-Shot-Object-Detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yan Liu (420 papers)
  2. Zhijie Zhang (25 papers)
  3. Li Niu (79 papers)
  4. Junjie Chen (89 papers)
  5. Liqing Zhang (80 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.