Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DASentimental: Detecting depression, anxiety and stress in texts via emotional recall, cognitive networks and machine learning (2110.13710v1)

Published 26 Oct 2021 in cs.CY, cs.AI, cs.CL, cs.SI, and physics.soc-ph

Abstract: Most current affect scales and sentiment analysis on written text focus on quantifying valence (sentiment) -- the most primary dimension of emotion. However, emotions are broader and more complex than valence. Distinguishing negative emotions of similar valence could be important in contexts such as mental health. This project proposes a semi-supervised machine learning model (DASentimental) to extract depression, anxiety and stress from written text. First, we trained the model to spot how sequences of recalled emotion words by $N=200$ individuals correlated with their responses to the Depression Anxiety Stress Scale (DASS-21). Within the framework of cognitive network science, we model every list of recalled emotions as a walk over a networked mental representation of semantic memory, with emotions connected according to free associations in people's memory. Among several tested machine learning approaches, we find that a multilayer perceptron neural network trained on word sequences and semantic network distances can achieve state-of-art, cross-validated predictions for depression ($R = 0.7$), anxiety ($R = 0.44$) and stress ($R = 0.52$). Though limited by sample size, this first-of-its-kind approach enables quantitative explorations of key semantic dimensions behind DAS levels. We find that semantic distances between recalled emotions and the dyad "sad-happy" are crucial features for estimating depression levels but are less important for anxiety and stress. We also find that semantic distance of recalls from "fear" can boost the prediction of anxiety but it becomes redundant when the "sad-happy" dyad is considered. Adopting DASentimental as a semi-supervised learning tool to estimate DAS in text, we apply it to a dataset of 142 suicide notes. We conclude by discussing key directions for future research enabled by artificial intelligence detecting stress, anxiety and depression.

Citations (22)

Summary

We haven't generated a summary for this paper yet.