Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Closer Look at Reference Learning for Fourier Phase Retrieval (2110.13688v1)

Published 26 Oct 2021 in eess.IV, cs.CV, and cs.LG

Abstract: Reconstructing images from their Fourier magnitude measurements is a problem that often arises in different research areas. This process is also referred to as phase retrieval. In this work, we consider a modified version of the phase retrieval problem, which allows for a reference image to be added onto the image before the Fourier magnitudes are measured. We analyze an unrolled Gerchberg-Saxton (GS) algorithm that can be used to learn a good reference image from a dataset. Furthermore, we take a closer look at the learned reference images and propose a simple and efficient heuristic to construct reference images that, in some cases, yields reconstructions of comparable quality as approaches that learn references. Our code is available at https://github.com/tuelwer/reference-learning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.