Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degree-Based Random Walk Approach for Graph Embedding (2110.13627v2)

Published 21 Oct 2021 in cs.SI, cs.AI, and cs.LG

Abstract: Graph embedding, representing local and global neighborhood information by numerical vectors, is a crucial part of the mathematical modeling of a wide range of real-world systems. Among the embedding algorithms, random walk-based algorithms have proven to be very successful. These algorithms collect information by creating numerous random walks with a redefined number of steps. Creating random walks is the most demanding part of the embedding process. The computation demand increases with the size of the network. Moreover, for real-world networks, considering all nodes on the same footing, the abundance of low-degree nodes creates an imbalanced data problem. In this work, a computationally less intensive and node connectivity aware uniform sampling method is proposed. In the proposed method, the number of random walks is created proportionally with the degree of the node. The advantages of the proposed algorithm become more enhanced when the algorithm is applied to large graphs. A comparative study by using two networks namely CORA and CiteSeer is presented. Comparing with the fixed number of walks case, the proposed method requires 50% less computational effort to reach the same accuracy for node classification and link prediction calculations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sarmad N. Mohammed (3 papers)
  2. Semra Gündüç (7 papers)

Summary

We haven't generated a summary for this paper yet.