Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-based Reinforcement Learning for Service Mesh Fault Resiliency in a Web Application-level (2110.13621v1)

Published 21 Oct 2021 in cs.DC, cs.AI, cs.LG, and cs.NI

Abstract: Microservice-based architectures enable different aspects of web applications to be created and updated independently, even after deployment. Associated technologies such as service mesh provide application-level fault resilience through attribute configurations that govern the behavior of request-response service -- and the interactions among them -- in the presence of failures. While this provides tremendous flexibility, the configured values of these attributes -- and the relationships among them -- can significantly affect the performance and fault resilience of the overall application. Furthermore, it is impossible to determine the best and worst combinations of attribute values with respect to fault resiliency via testing, due to the complexities of the underlying distributed system and the many possible attribute value combinations. In this paper, we present a model-based reinforcement learning workflow towards service mesh fault resiliency. Our approach enables the prediction of the most significant fault resilience behaviors at a web application-level, scratching from single service to aggregated multi-service management with efficient agent collaborations.

Citations (12)

Summary

We haven't generated a summary for this paper yet.