Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication-Constrained Distributed Quantile Regression with Optimal Statistical Guarantees (2110.13113v2)

Published 25 Oct 2021 in stat.ME and stat.ML

Abstract: We address the problem of how to achieve optimal inference in distributed quantile regression without stringent scaling conditions. This is challenging due to the non-smooth nature of the quantile regression (QR) loss function, which invalidates the use of existing methodology. The difficulties are resolved through a double-smoothing approach that is applied to the local (at each data source) and global objective functions. Despite the reliance on a delicate combination of local and global smoothing parameters, the quantile regression model is fully parametric, thereby facilitating interpretation. In the low-dimensional regime, we establish a finite-sample theoretical framework for the sequentially defined distributed QR estimators. This reveals a trade-off between the communication cost and statistical error. We further discuss and compare several alternative confidence set constructions, based on inversion of Wald and score-type tests and resampling techniques, detailing an improvement that is effective for more extreme quantile coefficients. In high dimensions, a sparse framework is adopted, where the proposed doubly-smoothed objective function is complemented with an $\ell_1$-penalty. We show that the corresponding distributed penalized QR estimator achieves the global convergence rate after a near-constant number of communication rounds. A thorough simulation study further elucidates our findings.

Citations (18)

Summary

We haven't generated a summary for this paper yet.