Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficiently Parallelizable Strassen-Based Multiplication of a Matrix by its Transpose (2110.13042v1)

Published 25 Oct 2021 in cs.DC

Abstract: The multiplication of a matrix by its transpose, $AT A$, appears as an intermediate operation in the solution of a wide set of problems. In this paper, we propose a new cache-oblivious algorithm (ATA) for computing this product, based upon the classical Strassen algorithm as a sub-routine. In particular, we decrease the computational cost to $\frac{2}{3}$ the time required by Strassen's algorithm, amounting to $\frac{14}{3}n{\log_2 7}$ floating point operations. ATA works for generic rectangular matrices, and exploits the peculiar symmetry of the resulting product matrix for saving memory. In addition, we provide an extensive implementation study of ATA in a shared memory system, and extend its applicability to a distributed environment. To support our findings, we compare our algorithm with state-of-the-art solutions specialized in the computation of $AT A$. Our experiments highlight good scalability with respect to both the matrix size and the number of involved processes, as well as favorable performance for both the parallel paradigms and the sequential implementation, when compared with other methods in the literature.

Citations (4)

Summary

We haven't generated a summary for this paper yet.