Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Slowly-varying Non-stationary Bandits (2110.12916v1)

Published 25 Oct 2021 in cs.LG and stat.ML

Abstract: We consider minimisation of dynamic regret in non-stationary bandits with a slowly varying property. Namely, we assume that arms' rewards are stochastic and independent over time, but that the absolute difference between the expected rewards of any arm at any two consecutive time-steps is at most a drift limit $\delta > 0$. For this setting that has not received enough attention in the past, we give a new algorithm which extends naturally the well-known Successive Elimination algorithm to the non-stationary bandit setting. We establish the first instance-dependent regret upper bound for slowly varying non-stationary bandits. The analysis in turn relies on a novel characterization of the instance as a detectable gap profile that depends on the expected arm reward differences. We also provide the first minimax regret lower bound for this problem, enabling us to show that our algorithm is essentially minimax optimal. Also, this lower bound we obtain matches that of the more general total variation-budgeted bandits problem, establishing that the seemingly easier former problem is at least as hard as the more general latter problem in the minimax sense. We complement our theoretical results with experimental illustrations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (6)

Summary

We haven't generated a summary for this paper yet.