Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering optimal fermion-qubit mappings through algorithmic enumeration (2110.12792v6)

Published 25 Oct 2021 in quant-ph

Abstract: Simulating fermionic systems on a quantum computer requires a high-performing mapping of fermionic states to qubits. A characteristic of an efficient mapping is its ability to translate local fermionic interactions into local qubit interactions, leading to easy-to-simulate qubit Hamiltonians. All fermion-qubit mappings must use a numbering scheme for the fermionic modes in order for translation to qubit operations. We make a distinction between the unordered labelling of fermions and the ordered labelling of the qubits. This separation shines light on a new way to design fermion-qubit mappings by making use of the enumeration scheme for the fermionic modes. The purpose of this paper is to demonstrate that this concept permits notions of fermion-qubit mappings that are optimal with regard to any cost function one might choose. Our main example is the minimisation of the average number of Pauli matrices in the Jordan-Wigner transformations of Hamiltonians for fermions interacting in square lattice arrangements. In choosing the best ordering of fermionic modes for the Jordan-Wigner transformation, and unlike other popular modifications, our prescription does not cost additional resources such as ancilla qubits. We demonstrate how Mitchison and Durbin's enumeration pattern minimises the average Pauli weight of Jordan-Wigner transformations of systems interacting in square lattices. This leads to qubit Hamiltonians consisting of terms with average Pauli weights 13.9% shorter than previously known. By adding only two ancilla qubits we introduce a new class of fermion-qubit mappings, and reduce the average Pauli weight of Hamiltonian terms by 37.9% compared to previous methods. For $n$-mode fermionic systems in cellular arrangements, we find enumeration patterns which result in $n{1/4}$ improvement in average Pauli weight over na\"ive schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. “Solving strongly correlated electron models on a quantum computer”. Physical Review A 92, 062318 (2015).
  2. “The feynman problem and fermionic entanglement: Fermionic theory versus qubit theory”. International Journal of Modern Physics A 29, 1430025 (2014).
  3. “Fermionic-mode entanglement in quantum information”. Physical Review A 87, 022338 (2013).
  4. “Fermionic hamiltonians for quantum simulations: a general reduction scheme” (2017). arXiv:1706.03637.
  5. “Towards quantum chemistry on a quantum computer”. Nature chemistry 2, 106–111 (2010).
  6. Manfred Salmhofer. “Renormalization in condensed matter: Fermionic systems–from mathematics to materials”. Nuclear Physics B 941, 868–899 (2019).
  7. Christina Verena Kraus. “A quantum information perspective of fermionic quantum many-body systems”. PhD thesis. Technische Universität München.  (2009).
  8. “Faster quantum algorithm to simulate fermionic quantum field theory”. Physical Review A 98, 012332 (2018).
  9. “Reliably assessing the electronic structure of cytochrome p450 on today’s classical computers and tomorrow’s quantum computers”. Proceedings of the National Academy of Sciences 119, e2203533119 (2022). arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.2203533119.
  10. “Review of particle physics”. Physical Review D (Particles and Fields)66 (2002).
  11. “Optimizing strongly interacting fermionic hamiltonians”. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing. Page 776–789. STOC 2022New York, NY, USA (2022). Association for Computing Machinery.
  12. “Simulated quantum computation of molecular energies”. Science 309, 1704–1707 (2005).
  13. “Quantum algorithm for obtaining the energy spectrum of molecular systems”. Physical Chemistry Chemical Physics 10, 5388–5393 (2008).
  14. “Quantum algorithm for molecular properties and geometry optimization”. The Journal of chemical physics 131, 224102 (2009).
  15. “Polynomial-time quantum algorithm for the simulation of chemical dynamics”. Proceedings of the National Academy of Sciences 105, 18681–18686 (2008).
  16. “Exploiting locality in quantum computation for quantum chemistry”. The journal of physical chemistry letters 5, 4368–4380 (2014).
  17. “Mapping local hamiltonians of fermions to local Hamiltonians of spins”. Journal of Statistical Mechanics: Theory and Experiment 2005, P09012 (2005).
  18. “Simulating chemistry using quantum computers”. Annual review of physical chemistry 62, 185–207 (2011).
  19. “The complexity of the local Hamiltonian problem”. Siam journal on computing 35, 1070–1097 (2006).
  20. “Adiabatic quantum simulation of quantum chemistry”. Scientific reports 4, 1–11 (2014).
  21. “Quantum algorithms for fermionic simulations”. Physical Review A 64, 022319 (2001).
  22. Alexei Y. Kitaev. “Quantum measurements and the abelian stabilizer problem”. Electron. Colloquium Comput. Complex.TR96 (1995). url: https://api.semanticscholar.org/CorpusID:17023060.
  23. “Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors”. Physical Review Letters 83, 5162 (1999).
  24. “A variational eigenvalue solver on a photonic quantum processor”. Nature communications 5, 1–7 (2014).
  25. “The theory of variational hybrid quantum-classical algorithms”. New Journal of Physics 18, 023023 (2016).
  26. “Improving quantum algorithms for quantum chemistry”. Quantum Information & Computation 15, 1–21 (2015).
  27. “Über das Paulische Äquivalenzverbot”. Zeitschrift fur Physik 47, 631–651 (1928).
  28. “Two soluble models of an antiferromagnetic chain”. Annals of Physics 16, 407–466 (1961).
  29. “Digital quantum simulation of fermionic models with a superconducting circuit”. Nature communications 6, 1–7 (2015).
  30. “Exact bosonization in two spatial dimensions and a new class of lattice gauge theories”. Annals of Physics 393, 234–253 (2018).
  31. “Bosonization in three spatial dimensions and a 2-form gauge theory”. Physical Review B 100, 245127 (2019).
  32. Yu-An Chen. “Exact bosonization in arbitrary dimensions”. Physical Review Research 2, 033527 (2020).
  33. “Equivalence between fermion-to-qubit mappings in two spatial dimensions”. PRX Quantum 4, 010326 (2023).
  34. “Superfast encodings for fermionic quantum simulation”. Physical Review Research 1, 033033 (2019).
  35. “Majorana loop stabilizer codes for error mitigation in fermionic quantum simulations”. Physical Review Applied 12, 064041 (2019).
  36. “Low weight fermionic encodings for lattice models” (2020). arXiv:2003.06939.
  37. “Quantum codes for quantum simulation of fermions on a square lattice of qubits”. Physical Review A 99, 022308 (2019).
  38. “Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning”. Quantum 4, 276 (2020).
  39. “Fermionic quantum computation”. Annals of Physics 298, 210–226 (2002).
  40. “Optimal numberings of an N𝑁Nitalic_N×\times×N𝑁Nitalic_N array”. SIAM Journal on Algebraic Discrete Methods 7, 571–582 (1986).
  41. “Some simplified \NP-complete problems”. In Proceedings of the sixth annual ACM symposium on Theory of computing. Pages 47–63.  (1974).
  42. “Complexity results for bandwidth minimization”. SIAM Journal on Applied Mathematics 34, 477–495 (1978).
  43. “Computers and intractability; a guide to the theory of np-completeness”. W. H. Freeman & Co. USA (1990).
  44. “Electron correlations in narrow energy bands”. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 276, 238–257 (1963). arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1963.0204.
  45. Michael A. Nielsen. “The fermionic canonical commutation relations and the jordan-wigner transform”. url: https://futureofmatter.com/assets/fermions_and_jordan_wigner.pdf.
  46. “Bonsai algorithm: Grow your own fermion-to-qubit mappings”. PRX Quantum 4, 030314 (2023).
  47. “To appear”.
  48. “A comparison of the bravyi–kitaev and jordan–wigner transformations for the quantum simulation of quantum chemistry”. Journal of chemical theory and computation 14, 5617–5630 (2018).
  49. “The Bravyi-Kitaev transformation for quantum computation of electronic structure”. The Journal of chemical physics 137, 224109 (2012).
  50. “Assignment problems and the location of economic activities”. Econometrica: journal of the Econometric SocietyPages 53–76 (1957).
  51. “Optimal linear labelings and eigenvalues of graphs”. Discrete Applied Mathematics 36, 153–168 (1992).
  52. “An analysis of spectral envelope reduction via quadratic assignment problems”. SIAM Journal on Matrix Analysis and Applications 18, 706–732 (1997). arXiv:https://doi.org/10.1137/S089547989427470X.
  53. Steven Bradish Horton. “The optimal linear arrangement problem: algorithms and approximation”. PhD thesis. School of Industrial and Systems Engineering, Georgia Institute of Technology.  (1997).
  54. “A survey of solved problems and applications on bandwidth, edgesum, and profile of graphs”. Journal of graph theory 31, 75–94 (1999).
  55. “Planar linear arrangements of outerplanar graphs”. IEEE transactions on Circuits and Systems 35, 323–333 (1988).
  56. Fan-Rong King Chung. “On optimal linear arrangements of trees”. Computers & mathematics with applications 10, 43–60 (1984).
  57. James B Saxe. “Dynamic-programming algorithms for recognizing small-bandwidth graphs in polynomial time”. SIAM Journal on Algebraic Discrete Methods 1, 363–369 (1980). arXiv:https://doi.org/10.1137/0601042.
  58. “Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer”. Journal of Physics A: Mathematical and Theoretical 49, 295301 (2016).
  59. “Local spin operators for fermion simulations”. Phys. Rev. A 94, 030301 (2016).
  60. “On the Qubit Routing Problem”. In Wim van Dam and Laura Mancinska, editors, 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Volume 135 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:32. Dagstuhl, Germany (2019). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
  61. “Optimal space-depth trade-off of CNOT circuits in quantum logic synthesis”. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Pages 213–229. SIAM (2020).
Citations (9)

Summary

We haven't generated a summary for this paper yet.