Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering matrices through optimal permutations (2110.12776v2)

Published 25 Oct 2021 in cond-mat.dis-nn

Abstract: Matrices are two-dimensional data structures allowing one to conceptually organize information. For example, adjacency matrices are useful to store the links of a network; correlation matrices are simple ways to arrange gene co-expression data or correlations of neuronal activities. Clustering matrix values into geometric patterns that are easy to interpret helps us to understand and explain the functional and structural organization of the system components described by matrix entries. Here we introduce a theoretical framework to cluster a matrix into a desired pattern by performing a similarity transformation obtained by solving a minimization problem named the optimal permutation problem. On the computational side, we present a fast clustering algorithm that can be applied to any type of matrix, including non-normal and singular matrices. We apply our algorithm to the neuronal correlation matrix and the synaptic adjacency matrix of the Caenorhabditis elegans nervous system by performing different types of clustering, including block-diagonal, nested, banded, and triangular patterns. Some of these clustering patterns show their biological significance in that they separate matrix entries into groups that match the experimentally known classification of C. elegans neurons into four broad categories, namely: interneurons, motor, sensory, and polymodal neurons.

Summary

We haven't generated a summary for this paper yet.