Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Highly Efficient Natural Image Matting (2110.12748v1)

Published 25 Oct 2021 in cs.CV

Abstract: Over the last few years, deep learning based approaches have achieved outstanding improvements in natural image matting. However, there are still two drawbacks that impede the widespread application of image matting: the reliance on user-provided trimaps and the heavy model sizes. In this paper, we propose a trimap-free natural image matting method with a lightweight model. With a lightweight basic convolution block, we build a two-stages framework: Segmentation Network (SN) is designed to capture sufficient semantics and classify the pixels into unknown, foreground and background regions; Matting Refine Network (MRN) aims at capturing detailed texture information and regressing accurate alpha values. With the proposed cross-level fusion Module (CFM), SN can efficiently utilize multi-scale features with less computational cost. Efficient non-local attention module (ENA) in MRN can efficiently model the relevance between different pixels and help regress high-quality alpha values. Utilizing these techniques, we construct an extremely light-weighted model, which achieves comparable performance with ~1\% parameters (344k) of large models on popular natural image matting benchmarks.

Citations (19)

Summary

We haven't generated a summary for this paper yet.