Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Knowledge Transfer via Loosely Supervised Auxiliary Tasks (2110.12696v1)

Published 25 Oct 2021 in cs.CV

Abstract: Knowledge transfer using convolutional neural networks (CNNs) can help efficiently train a CNN with fewer parameters or maximize the generalization performance under limited supervision. To enable a more efficient transfer of pretrained knowledge under relaxed conditions, we propose a simple yet powerful knowledge transfer methodology without any restrictions regarding the network structure or dataset used, namely self-supervised knowledge transfer (SSKT), via loosely supervised auxiliary tasks. For this, we devise a training methodology that transfers previously learned knowledge to the current training process as an auxiliary task for the target task through self-supervision using a soft label. The SSKT is independent of the network structure and dataset, and is trained differently from existing knowledge transfer methods; hence, it has an advantage in that the prior knowledge acquired from various tasks can be naturally transferred during the training process to the target task. Furthermore, it can improve the generalization performance on most datasets through the proposed knowledge transfer between different problem domains from multiple source networks. SSKT outperforms the other transfer learning methods (KD, DML, and MAXL) through experiments under various knowledge transfer settings. The source code will be made available to the public.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Seungbum Hong (22 papers)
  2. Jihun Yoon (4 papers)
  3. Junmo Kim (90 papers)
  4. Min-Kook Choi (12 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.