Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-tuning of Pre-trained Transformers for Hate, Offensive, and Profane Content Detection in English and Marathi (2110.12687v1)

Published 25 Oct 2021 in cs.CL, cs.AI, and cs.LG

Abstract: This paper describes neural models developed for the Hate Speech and Offensive Content Identification in English and Indo-Aryan Languages Shared Task 2021. Our team called neuro-utmn-thales participated in two tasks on binary and fine-grained classification of English tweets that contain hate, offensive, and profane content (English Subtasks A & B) and one task on identification of problematic content in Marathi (Marathi Subtask A). For English subtasks, we investigate the impact of additional corpora for hate speech detection to fine-tune transformer models. We also apply a one-vs-rest approach based on Twitter-RoBERTa to discrimination between hate, profane and offensive posts. Our models ranked third in English Subtask A with the F1-score of 81.99% and ranked second in English Subtask B with the F1-score of 65.77%. For the Marathi tasks, we propose a system based on the Language-Agnostic BERT Sentence Embedding (LaBSE). This model achieved the second result in Marathi Subtask A obtaining an F1 of 88.08%.

Citations (17)

Summary

We haven't generated a summary for this paper yet.