Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Influence Maximization (2110.12602v2)

Published 25 Oct 2021 in cs.DS and cs.SI

Abstract: We initiate a systematic study on $\mathit{dynamic}$ $\mathit{influence}$ $\mathit{maximization}$ (DIM). In the DIM problem, one maintains a seed set $S$ of at most $k$ nodes in a dynamically involving social network, with the goal of maximizing the expected influence spread while minimizing the amortized updating cost. We consider two evolution models. In the $\mathit{incremental}$ model, the social network gets enlarged over time and one only introduces new users and establishes new social links, we design an algorithm that achieves $(1-1/e-\epsilon)$-approximation to the optimal solution and has $k \cdot\mathsf{poly}(\log n, \epsilon{-1})$ amortized running time, which matches the state-of-art offline algorithm with only poly-logarithmic overhead. In the $\mathit{fully}$ $\mathit{dynamic}$ model, users join in and leave, influence propagation gets strengthened or weakened in real time, we prove that under the Strong Exponential Time Hypothesis (SETH), no algorithm can achieve $2{-(\log n){1-o(1)}}$-approximation unless the amortized running time is $n{1-o(1)}$. On the technical side, we exploit novel adaptive sampling approaches that reduce DIM to the dynamic MAX-k coverage problem, and design an efficient $(1-1/e-\epsilon)$-approximation algorithm for it. Our lower bound leverages the recent developed distributed PCP framework.

Citations (17)

Summary

We haven't generated a summary for this paper yet.