Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Spectral Clustering Using Spectrum-Preserving Node Aggregation (2110.12328v6)

Published 24 Oct 2021 in cs.LG

Abstract: Spectral clustering is one of the most popular clustering methods. However, the high computational cost due to the involved eigen-decomposition procedure can immediately hinder its applications in large-scale tasks. In this paper we use spectrum-preserving node reduction to accelerate eigen-decomposition and generate concise representations of data sets. Specifically, we create a small number of pseudonodes based on spectral similarity. Then, standard spectral clustering algorithm is performed on the smaller node set. Finally, each data point in the original data set is assigned to the cluster as its representative pseudo-node. The proposed framework run in nearly-linear time. Meanwhile, the clustering accuracy can be significantly improved by mining concise representations. The experimental results show dramatically improved clustering performance when compared with state-of-the-art methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.