Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fundamental properties of Cauchy--Szegő projection on quaternionic Siegel upper half space and applications (2110.12210v1)

Published 23 Oct 2021 in math.CV

Abstract: We investigate the Cauchy--Szeg\H{o} projection for quaternionic Siegel upper half space to obtain the pointwise (higher order) regularity estimates for Cauchy--Szeg\H{o} kernel and prove that the Cauchy--Szeg\H{o} kernel is non-zero everywhere, which further yields a non-degenerated pointwise lower bound. As applications, we prove the uniform boundedness of Cauchy--Szeg\H{o} projection on every atom on the quaternionic Heisenberg group, which is used to give an atomic decomposition of regular Hardy space $ Hp$ on quaternionic Siegel upper half space for $2/3<p\leq1$. Moreover, we establish the characterisation of singular values of the commutator of Cauchy--Szeg\H{o} projection based on the kernel estimates and on the recent new approach by Fan--Lacey--Li. The quaternionic structure (lack of commutativity) is encoded in the symmetry groups of regular functions and the associated partial differential equations.

Summary

We haven't generated a summary for this paper yet.