Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
138 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Hybrid stochastic method for the tensor renormalization group (2110.11921v1)

Published 22 Oct 2021 in hep-lat and cond-mat.str-el

Abstract: We propose a hybrid stochastic method for the tensor renormalization group (TRG) approach. TRG is known as a powerful tool to study the many-body systems and quantum field theory on the lattice. It is based on a low-rank approximation of the tensor using the truncated singular value decomposition (SVD), whose computational cost increases as the bond dimension increases, so that efficient cost reduction techniques are highly demanded. We use noise vectors for the low-rank approximation with the truncated SVD, by which the truncation error is replaced with a statistical error due to noise, and an error estimation could be improved. We test this method in the classical Ising model and observe a better accuracy than TRG. We also discuss a cross contamination issue in a multiple use of the same noise vectors, and to remove this systematic error we consider position-dependent noise vectors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.