Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Creating Knowledge Graphs Subsets using Shape Expressions (2110.11709v3)

Published 22 Oct 2021 in cs.DB and cs.AI

Abstract: The initial adoption of knowledge graphs by Google and later by big companies has increased their adoption and popularity. In this paper we present a formal model for three different types of knowledge graphs which we call RDF-based graphs, property graphs and wikibase graphs. In order to increase the quality of Knowledge Graphs, several approaches have appeared to describe and validate their contents. Shape Expressions (ShEx) has been proposed as concise language for RDF validation. We give a brief introduction to ShEx and present two extensions that can also be used to describe and validate property graphs (PShEx) and wikibase graphs (WShEx). One problem of knowledge graphs is the large amount of data they contain, which jeopardizes their practical application. In order to palliate this problem, one approach is to create subsets of those knowledge graphs for some domains. We propose the following approaches to generate those subsets: Entity-matching, simple matching, ShEx matching, ShEx plus Slurp and ShEx plus Pregel which are based on declaratively defining the subsets by either matching some content or by Shape Expressions. The last approach is based on a novel validation algorithm for ShEx based on the Pregel algorithm that can handle big data graphs and has been implemented on Apache Spark GraphX.

Citations (6)

Summary

We haven't generated a summary for this paper yet.