Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DQC: a Python program package for Differentiable Quantum Chemistry (2110.11678v1)

Published 22 Oct 2021 in physics.chem-ph and cs.LG

Abstract: Automatic differentiation represents a paradigm shift in scientific programming, where evaluating both functions and their derivatives is required for most applications. By removing the need to explicitly derive expressions for gradients, development times can be be shortened, and calculations simplified. For these reasons, automatic differentiation has fueled the rapid growth of a variety of sophisticated machine learning techniques over the past decade, but is now also increasingly showing its value to support {\it ab initio} simulations of quantum systems, and enhance computational quantum chemistry. Here we present an open-source differentiable quantum chemistry simulation code, DQC, and explore applications facilitated by automatic differentiation: (1) calculating molecular perturbation properties; (2) reoptimizing a basis set for hydrocarbons; (3) checking the stability of self-consistent field wave functions; and (4) predicting molecular properties via alchemical perturbations.

Citations (32)

Summary

We haven't generated a summary for this paper yet.