Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WebFed: Cross-platform Federated Learning Framework Based on Web Browser with Local Differential Privacy (2110.11646v1)

Published 22 Oct 2021 in cs.CR, cs.AI, cs.DC, and cs.LG

Abstract: For data isolated islands and privacy issues, federated learning has been extensively invoking much interest since it allows clients to collaborate on training a global model using their local data without sharing any with a third party. However, the existing federated learning frameworks always need sophisticated condition configurations (e.g., sophisticated driver configuration of standalone graphics card like NVIDIA, compile environment) that bring much inconvenience for large-scale development and deployment. To facilitate the deployment of federated learning and the implementation of related applications, we innovatively propose WebFed, a novel browser-based federated learning framework that takes advantage of the browser's features (e.g., Cross-platform, JavaScript Programming Features) and enhances the privacy protection via local differential privacy mechanism. Finally, We conduct experiments on heterogeneous devices to evaluate the performance of the proposed WebFed framework.

Citations (4)

Summary

We haven't generated a summary for this paper yet.