Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trajectory Prediction using Generative Adversarial Network in Multi-Class Scenarios (2110.11401v1)

Published 18 Oct 2021 in cs.LG and cs.AI

Abstract: Predicting traffic agents' trajectories is an important task for auto-piloting. Most previous work on trajectory prediction only considers a single class of road agents. We use a sequence-to-sequence model to predict future paths from observed paths and we incorporate class information into the model by concatenating extracted label representations with traditional location inputs. We experiment with both LSTM and transformer encoders and we use generative adversarial network as introduced in Social GAN to learn the multi-modal behavior of traffic agents. We train our model on Stanford Drone dataset which includes 6 classes of road agents and evaluate the impact of different model components on the prediction performance in multi-class scenes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.