Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Object Tracking and Segmentation with a Space-Time Memory Network (2110.11284v2)

Published 21 Oct 2021 in cs.CV

Abstract: We propose a method for multi-object tracking and segmentation based on a novel memory-based mechanism to associate tracklets. The proposed tracker, MeNToS, addresses particularly the long-term data association problem, when objects are not observable for long time intervals. Indeed, the recently introduced HOTA metric (High Order Tracking Accuracy), which has a better alignment than the formerly established MOTA (Multiple Object Tracking Accuracy) with the human visual assessment of tracking, has shown that improvements are still needed for data association, despite the recent improvement in object detection. In MeNToS, after creating tracklets using instance segmentation and optical flow, the proposed method relies on a space-time memory network originally developed for one-shot video object segmentation to improve the association of sequence of detections (tracklets) with temporal gaps. We evaluate our tracker on KITTIMOTS and MOTSChallenge and we show the benefit of our data association strategy with the HOTA metric. Additional ablation studies demonstrate that our approach using a space-time memory network gives better and more robust long-term association than those based on a re-identification network. Our project page is at \url{www.mehdimiah.com/mentos+}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mehdi Miah (5 papers)
  2. Guillaume-Alexandre Bilodeau (62 papers)
  3. Nicolas Saunier (29 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.