Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One Representative-Shot Learning Using a Population-Driven Template with Application to Brain Connectivity Classification and Evolution Prediction (2110.11238v1)

Published 6 Oct 2021 in cs.NE, cs.CV, and cs.LG

Abstract: Few-shot learning presents a challenging paradigm for training discriminative models on a few training samples representing the target classes to discriminate. However, classification methods based on deep learning are ill-suited for such learning as they need large amounts of training data --let alone one-shot learning. Recently, graph neural networks (GNNs) have been introduced to the field of network neuroscience, where the brain connectivity is encoded in a graph. However, with scarce neuroimaging datasets particularly for rare diseases and low-resource clinical facilities, such data-devouring architectures might fail in learning the target task. In this paper, we take a very different approach in training GNNs, where we aim to learn with one sample and achieve the best performance --a formidable challenge to tackle. Specifically, we present the first one-shot paradigm where a GNN is trained on a single population-driven template --namely a connectional brain template (CBT). A CBT is a compact representation of a population of brain graphs capturing the unique connectivity patterns shared across individuals. It is analogous to brain image atlases for neuroimaging datasets. Using a one-representative CBT as a training sample, we alleviate the training load of GNN models while boosting their performance across a variety of classification and regression tasks. We demonstrate that our method significantly outperformed benchmark one-shot learning methods with downstream classification and time-dependent brain graph data forecasting tasks while competing with the train-on-all conventional training strategy. Our source code can be found at https://github.com/basiralab/one-representative-shot-learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Umut Guvercin (1 paper)
  2. Mohammed Amine Gharsallaoui (4 papers)
  3. Islem Rekik (48 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.