Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word Measures on $GL_N(q)$ and Free Group Algebras (2110.11099v3)

Published 21 Oct 2021 in math.GR, math.CO, and math.RA

Abstract: Fix a finite field $K$ of order $q$ and a word $w$ in a free group $F$ on $r$ generators. A $w$-random element in $GL_N(K)$ is obtained by sampling $r$ independent uniformly random elements $g_1,\ldots,g_r\in GL_N(K)$ and evaluating $w\left(g_1,\ldots,g_r\right)$. Consider $\mathbb{E}w\left[\mathrm{fix}\right]$, the average number of vectors in $K{N}$ fixed by a $w$-random element. We show that $\mathbb{E}{w}\left[\mathrm{fix}\right]$ is a rational function in $q{N}$. Moreover, if $w=u{d}$ with $u$ a non-power, then the limit $\lim_{N\to\infty}\mathbb{E}{w}\left[\mathrm{fix}\right]$ depends only on $d$ and not on $u$. These two phenomena generalize to all stable characters of the groups $\left{ GL_N(K)\right}{N}$. A main feature of this work is the connection we establish between word measures on $GL_N(K)$ and the free group algebra $K\left[F\right]$. A classical result of Cohn [1964] and Lewin [1969] is that every one-sided ideal of $K\left[F\right]$ is a free $K\left[F\right]$-module with a well-defined rank. We show that for $w$ a non-power, $\mathbb{E}_{w}\left[\mathrm{fix}\right]=2+\frac{C}{q{N}}+O\left(\frac{1}{q{2N}}\right)$, where $C$ is the number of rank-2 right ideals $I\le K\left[F\right]$ which contain $w-1$ but not as a basis element. We describe a full conjectural picture generalizing this result, featuring a new invariant we call the $q$-primitivity rank of $w$. In the process, we prove several new results about free group algebras. For example, we show that if $T$ is any finite subtree of the Cayley graph of $F$, and $I\le K\left[F\right]$ is a right ideal with a generating set supported on $T$, then $I$ admits a basis supported on $T$. We also prove an analogue of Kaplansky's unit conjecture for certain $K\left[F\right]$-modules.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. A note on group rings of certain torsion-free groups. Canad. Math. Bull., 15(3):441–445, 1972.
  2. P. Billingsley. Convergence of probability measures. John Wiley & Sons, 1999. 2nd edition, 2013.
  3. S. D. Brodskii. Equations over groups, and groups with one defining relation. Sib. Math. J., 25(2):235–251, 1984.
  4. Y. Brodsky. Word measures on unitary groups: Improved bounds for small representations. Int. Math. Res. Not. IMRN, 2024. (online publication May 2024).
  5. A. Broder and E. Shamir. On the second eigenvalue of random regular graphs. In 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pages 286–294. IEEE, 1987.
  6. Ch. Berg and G. Valent. The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes. Methods Appl. Anal., 1(2):169–209, 1994.
  7. T. S. Chihara. An introduction to orthogonal polynomials. 1978.
  8. J. S. Christiansen. Indeterminate moment problems within the Askey-scheme. University of Copenhagen, 2004.
  9. P. M. Cohn. Free ideal rings. J. Algebra, 1(1):47–69, 1964.
  10. D. E. Cohen. Groups of cohomological dimension one, volume 245 of Lecture notes in mathematics. Springer-Verlag, 1972.
  11. A. Clay and D. Rolfsen. Ordered groups and topology, volume 176. American Mathematical Soc., 2016.
  12. B. Collins and P. Śniady. Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys., 264(3):773–795, 2006.
  13. R. Durrett. Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 5 edition, 2019.
  14. J. Delgado and E. Ventura. A list of applications of Stallings automata. Trans. Comb., 11(3):181–235, 2022.
  15. S. Eberhard and U. Jezernik. Babai’s conjecture for high-rank classical groups with random generators. Invent. Math., 227(1):149–210, 2022.
  16. The ring of stable characters over G⁢L∙⁢(q)𝐺subscript𝐿∙𝑞{GL}_{\bullet}(q)italic_G italic_L start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT ( italic_q ). preprint, available in arXiv:2409.16571, 2024.
  17. J. Friedman and D. Puder. A note on the trace method for random regular graphs. Israel J. Math., 256:269–282, 2023.
  18. J. Fulman and D. Stanton. On the distribution of the number of fixed vectors for the finite classical groups. Ann. Comb., 20(4):755–773, 2016.
  19. G. Gardam. A counterexample to the unit conjecture for group rings. Ann. of Math. (2), 194(3):967–979, 2021.
  20. W. L. Gan and J. Watterlond. A representation stability theorem for VI-modules. Algebr. Represent. Theory, 21(1):47–60, 2018.
  21. C. Hog-Angeloni. A short topological proof of Cohn’s theorem. In Topology and Combinatorial Group Theory, pages 90–95. Springer, 1990.
  22. Some orbits of free words that are determined by measures on finite groups. J. Algebra, 555:305–324, 2020.
  23. J. Howie. On locally indicable groups. Math. Z., 180(4):445–461, 1982.
  24. L. Hanany and D. Puder. Word measures on symmetric groups. Int. Math. Res. Not. IMRN, 2023(11):9221–9297, 2023.
  25. I. Kapovich. Primitivity rank for random elements in free groups. J. Group Theory, 25(5):823–835, 2022.
  26. Hypergeometric orthogonal polynomials and their q-analogues. Springer Science & Business Media, 2010.
  27. Elements of finite order in groups with a single defining relation. Comm. Pure and Appl. Math., 13(1):57–66, 1960.
  28. J. Lewin. Free modules over free algebras and free group algebras: the Schreier technique. Trans. Amer. Math. Soc., 145:455–465, 1969.
  29. N. Linial and D. Puder. Word maps and spectra of random graph lifts. Random Structures Algorithms, 37(1):100–135, 2010.
  30. L. Louder and H. Wilton. Negative immersions for one-relator groups. Duke Math. J., 171(3):547–594, 2022.
  31. M. Magee. Random unitary representations of surface groups I: Asymptotic expansions. Comm. Math. Phys., 391:119–171, 2022.
  32. M. Magee and D. Puder. Matrix group integrals, surfaces, and mapping class groups I: U⁢(n)𝑈𝑛{U}(n)italic_U ( italic_n ). Invent. Math., 218(2):341–411, 2019.
  33. M. Magee and D. Puder. Surface words are determined by word measures on groups. Israel J. Math., 241:749–774, 2021.
  34. M. Magee and D. Puder. The asymptotic statistics of random covering surfaces. Forum Math. Pi, 11:e15, 2023. 51 pages.
  35. M. Magee and D. Puder. Matrix group integrals, surfaces, and mapping class groups II: O⁢(n)𝑂𝑛{O}(n)italic_O ( italic_n ) and S⁢p⁢(n)𝑆𝑝𝑛{S}p(n)italic_S italic_p ( italic_n ). Math. Ann., 388:1437–1494, 2024.
  36. Second order freeness and fluctuations of random matrices II: Unitary random matrices. Adv. Math., 209(1):212–240, 2007.
  37. A. Nica. On the number of cycles of given length of a free word in several random permutations. Random Structures Algorithms, 5(5):703–730, 1994.
  38. D. Puder and O. Parzanchevski. Measure preserving words are primitive. J. Amer. Math. Soc., 28(1):63–97, 2015.
  39. A. Putman and S. V. Sam. Representation stability and finite linear groups. Duke Math. J., 166(13):2521–2598, 2017.
  40. D. Puder and Y. Shomroni. Stable invariants and their role in word measures on groups. preprint, available in arXiv:2311.17733, 2023.
  41. D. Puder. Primitive words, free factors and measure preservation. Israel J. Math., 201(1):25–73, 2014.
  42. D. Puder. Expansion of random graphs: new proofs, new results. Invent. Math., 201(3):845–908, 2015.
  43. D. Puder and T. Zimhoni. Local statistics of random permutations from free products. Int. Math. Res. Not. IMRN, 2024(5):4242–4300, 2024.
  44. F. Rădulescu. Combinatorial aspects of Connes’s embedding conjecture and asymptotic distribution of traces of products of unitaries. In Proceedings of the Operator Algebra Conference, Bucharest. Theta Foundation, 2006.
  45. A. Rosenmann. An algorithm for constructing Gröbner and free Schreier bases in free group algebras. J. Symbolic Comput., 16(6):523–549, 1993.
  46. A. Rosenmann and Sh. Rosset. Ideals of finite codimension in free algebras and the FC-localization. Pacific J. Math., 162(2):351–371, 1994.
  47. Y. Shomroni. Word measures on wreath products I. arXiv preprint 2305.11285, 2023.
  48. Y. Shomroni. Word measures on wreath products II. arXiv preprint 2311.11316, 2023.
  49. U. U. Umirbaev. Primitive elements of free groups. Russ. Math. Surv., 49(2):184–185, 1994.
  50. C. M. Weinbaum. On relators and diagrams for groups with one defining relation. Illinois J. Math., 16(2):308–322, 1972.
  51. D. West. Word measures on G⁢Ln⁢(q)𝐺subscript𝐿𝑛𝑞{GL}_{n}(q)italic_G italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_q ). Master’s thesis, Tel Aviv University, 2019.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com