Word Measures on $GL_N(q)$ and Free Group Algebras (2110.11099v3)
Abstract: Fix a finite field $K$ of order $q$ and a word $w$ in a free group $F$ on $r$ generators. A $w$-random element in $GL_N(K)$ is obtained by sampling $r$ independent uniformly random elements $g_1,\ldots,g_r\in GL_N(K)$ and evaluating $w\left(g_1,\ldots,g_r\right)$. Consider $\mathbb{E}w\left[\mathrm{fix}\right]$, the average number of vectors in $K{N}$ fixed by a $w$-random element. We show that $\mathbb{E}{w}\left[\mathrm{fix}\right]$ is a rational function in $q{N}$. Moreover, if $w=u{d}$ with $u$ a non-power, then the limit $\lim_{N\to\infty}\mathbb{E}{w}\left[\mathrm{fix}\right]$ depends only on $d$ and not on $u$. These two phenomena generalize to all stable characters of the groups $\left{ GL_N(K)\right}{N}$. A main feature of this work is the connection we establish between word measures on $GL_N(K)$ and the free group algebra $K\left[F\right]$. A classical result of Cohn [1964] and Lewin [1969] is that every one-sided ideal of $K\left[F\right]$ is a free $K\left[F\right]$-module with a well-defined rank. We show that for $w$ a non-power, $\mathbb{E}_{w}\left[\mathrm{fix}\right]=2+\frac{C}{q{N}}+O\left(\frac{1}{q{2N}}\right)$, where $C$ is the number of rank-2 right ideals $I\le K\left[F\right]$ which contain $w-1$ but not as a basis element. We describe a full conjectural picture generalizing this result, featuring a new invariant we call the $q$-primitivity rank of $w$. In the process, we prove several new results about free group algebras. For example, we show that if $T$ is any finite subtree of the Cayley graph of $F$, and $I\le K\left[F\right]$ is a right ideal with a generating set supported on $T$, then $I$ admits a basis supported on $T$. We also prove an analogue of Kaplansky's unit conjecture for certain $K\left[F\right]$-modules.
- A note on group rings of certain torsion-free groups. Canad. Math. Bull., 15(3):441–445, 1972.
- P. Billingsley. Convergence of probability measures. John Wiley & Sons, 1999. 2nd edition, 2013.
- S. D. Brodskii. Equations over groups, and groups with one defining relation. Sib. Math. J., 25(2):235–251, 1984.
- Y. Brodsky. Word measures on unitary groups: Improved bounds for small representations. Int. Math. Res. Not. IMRN, 2024. (online publication May 2024).
- A. Broder and E. Shamir. On the second eigenvalue of random regular graphs. In 28th Annual Symposium on Foundations of Computer Science (SFCS 1987), pages 286–294. IEEE, 1987.
- Ch. Berg and G. Valent. The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes. Methods Appl. Anal., 1(2):169–209, 1994.
- T. S. Chihara. An introduction to orthogonal polynomials. 1978.
- J. S. Christiansen. Indeterminate moment problems within the Askey-scheme. University of Copenhagen, 2004.
- P. M. Cohn. Free ideal rings. J. Algebra, 1(1):47–69, 1964.
- D. E. Cohen. Groups of cohomological dimension one, volume 245 of Lecture notes in mathematics. Springer-Verlag, 1972.
- A. Clay and D. Rolfsen. Ordered groups and topology, volume 176. American Mathematical Soc., 2016.
- B. Collins and P. Śniady. Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys., 264(3):773–795, 2006.
- R. Durrett. Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 5 edition, 2019.
- J. Delgado and E. Ventura. A list of applications of Stallings automata. Trans. Comb., 11(3):181–235, 2022.
- S. Eberhard and U. Jezernik. Babai’s conjecture for high-rank classical groups with random generators. Invent. Math., 227(1):149–210, 2022.
- The ring of stable characters over GL∙(q)𝐺subscript𝐿∙𝑞{GL}_{\bullet}(q)italic_G italic_L start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT ( italic_q ). preprint, available in arXiv:2409.16571, 2024.
- J. Friedman and D. Puder. A note on the trace method for random regular graphs. Israel J. Math., 256:269–282, 2023.
- J. Fulman and D. Stanton. On the distribution of the number of fixed vectors for the finite classical groups. Ann. Comb., 20(4):755–773, 2016.
- G. Gardam. A counterexample to the unit conjecture for group rings. Ann. of Math. (2), 194(3):967–979, 2021.
- W. L. Gan and J. Watterlond. A representation stability theorem for VI-modules. Algebr. Represent. Theory, 21(1):47–60, 2018.
- C. Hog-Angeloni. A short topological proof of Cohn’s theorem. In Topology and Combinatorial Group Theory, pages 90–95. Springer, 1990.
- Some orbits of free words that are determined by measures on finite groups. J. Algebra, 555:305–324, 2020.
- J. Howie. On locally indicable groups. Math. Z., 180(4):445–461, 1982.
- L. Hanany and D. Puder. Word measures on symmetric groups. Int. Math. Res. Not. IMRN, 2023(11):9221–9297, 2023.
- I. Kapovich. Primitivity rank for random elements in free groups. J. Group Theory, 25(5):823–835, 2022.
- Hypergeometric orthogonal polynomials and their q-analogues. Springer Science & Business Media, 2010.
- Elements of finite order in groups with a single defining relation. Comm. Pure and Appl. Math., 13(1):57–66, 1960.
- J. Lewin. Free modules over free algebras and free group algebras: the Schreier technique. Trans. Amer. Math. Soc., 145:455–465, 1969.
- N. Linial and D. Puder. Word maps and spectra of random graph lifts. Random Structures Algorithms, 37(1):100–135, 2010.
- L. Louder and H. Wilton. Negative immersions for one-relator groups. Duke Math. J., 171(3):547–594, 2022.
- M. Magee. Random unitary representations of surface groups I: Asymptotic expansions. Comm. Math. Phys., 391:119–171, 2022.
- M. Magee and D. Puder. Matrix group integrals, surfaces, and mapping class groups I: U(n)𝑈𝑛{U}(n)italic_U ( italic_n ). Invent. Math., 218(2):341–411, 2019.
- M. Magee and D. Puder. Surface words are determined by word measures on groups. Israel J. Math., 241:749–774, 2021.
- M. Magee and D. Puder. The asymptotic statistics of random covering surfaces. Forum Math. Pi, 11:e15, 2023. 51 pages.
- M. Magee and D. Puder. Matrix group integrals, surfaces, and mapping class groups II: O(n)𝑂𝑛{O}(n)italic_O ( italic_n ) and Sp(n)𝑆𝑝𝑛{S}p(n)italic_S italic_p ( italic_n ). Math. Ann., 388:1437–1494, 2024.
- Second order freeness and fluctuations of random matrices II: Unitary random matrices. Adv. Math., 209(1):212–240, 2007.
- A. Nica. On the number of cycles of given length of a free word in several random permutations. Random Structures Algorithms, 5(5):703–730, 1994.
- D. Puder and O. Parzanchevski. Measure preserving words are primitive. J. Amer. Math. Soc., 28(1):63–97, 2015.
- A. Putman and S. V. Sam. Representation stability and finite linear groups. Duke Math. J., 166(13):2521–2598, 2017.
- D. Puder and Y. Shomroni. Stable invariants and their role in word measures on groups. preprint, available in arXiv:2311.17733, 2023.
- D. Puder. Primitive words, free factors and measure preservation. Israel J. Math., 201(1):25–73, 2014.
- D. Puder. Expansion of random graphs: new proofs, new results. Invent. Math., 201(3):845–908, 2015.
- D. Puder and T. Zimhoni. Local statistics of random permutations from free products. Int. Math. Res. Not. IMRN, 2024(5):4242–4300, 2024.
- F. Rădulescu. Combinatorial aspects of Connes’s embedding conjecture and asymptotic distribution of traces of products of unitaries. In Proceedings of the Operator Algebra Conference, Bucharest. Theta Foundation, 2006.
- A. Rosenmann. An algorithm for constructing Gröbner and free Schreier bases in free group algebras. J. Symbolic Comput., 16(6):523–549, 1993.
- A. Rosenmann and Sh. Rosset. Ideals of finite codimension in free algebras and the FC-localization. Pacific J. Math., 162(2):351–371, 1994.
- Y. Shomroni. Word measures on wreath products I. arXiv preprint 2305.11285, 2023.
- Y. Shomroni. Word measures on wreath products II. arXiv preprint 2311.11316, 2023.
- U. U. Umirbaev. Primitive elements of free groups. Russ. Math. Surv., 49(2):184–185, 1994.
- C. M. Weinbaum. On relators and diagrams for groups with one defining relation. Illinois J. Math., 16(2):308–322, 1972.
- D. West. Word measures on GLn(q)𝐺subscript𝐿𝑛𝑞{GL}_{n}(q)italic_G italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_q ). Master’s thesis, Tel Aviv University, 2019.