Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Nested Weighted Tchebycheff Multi-Objective Bayesian Optimization Approach for Flexibility of Unknown Utopia Estimation in Expensive Black-box Design Problems (2110.11070v1)

Published 16 Oct 2021 in cs.LG and stat.ML

Abstract: We propose a nested weighted Tchebycheff Multi-objective Bayesian optimization framework where we build a regression model selection procedure from an ensemble of models, towards better estimation of the uncertain parameters of the weighted-Tchebycheff expensive black-box multi-objective function. In existing work, a weighted Tchebycheff MOBO approach has been demonstrated which attempts to estimate the unknown utopia in formulating acquisition function, through calibration using a priori selected regression model. However, the existing MOBO model lacks flexibility in selecting the appropriate regression models given the guided sampled data and therefore, can under-fit or over-fit as the iterations of the MOBO progress, reducing the overall MOBO performance. As it is too complex to a priori guarantee a best model in general, this motivates us to consider a portfolio of different families of predictive models fitted with current training data, guided by the WTB MOBO; the best model is selected following a user-defined prediction root mean-square-error-based approach. The proposed approach is implemented in optimizing a multi-modal benchmark problem and a thin tube design under constant loading of temperature-pressure, with minimizing the risk of creep-fatigue failure and design cost. Finally, the nested weighted Tchebycheff MOBO model performance is compared with different MOBO frameworks with respect to accuracy in parameter estimation, Pareto-optimal solutions and function evaluation cost. This method is generalized enough to consider different families of predictive models in the portfolio for best model selection, where the overall design architecture allows for solving any high-dimensional (multiple functions) complex black-box problems and can be extended to any other global criterion multi-objective optimization methods where prior knowledge of utopia is required.

Citations (3)

Summary

We haven't generated a summary for this paper yet.