Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Individualized Decision-Making Under Partial Identification: Three Perspectives, Two Optimality Results, and One Paradox (2110.10961v1)

Published 21 Oct 2021 in stat.ME, math.ST, stat.AP, stat.ML, and stat.TH

Abstract: Unmeasured confounding is a threat to causal inference and gives rise to biased estimates. In this article, we consider the problem of individualized decision-making under partial identification. Firstly, we argue that when faced with unmeasured confounding, one should pursue individualized decision-making using partial identification in a comprehensive manner. We establish a formal link between individualized decision-making under partial identification and classical decision theory by considering a lower bound perspective of value/utility function. Secondly, building on this unified framework, we provide a novel minimax solution (i.e., a rule that minimizes the maximum regret for so-called opportunists) for individualized decision-making/policy assignment. Lastly, we provide an interesting paradox drawing on novel connections between two challenging domains, that is, individualized decision-making and unmeasured confounding. Although motivated by instrumental variable bounds, we emphasize that the general framework proposed in this article would in principle apply for a rich set of bounds that might be available under partial identification.

Citations (15)

Summary

We haven't generated a summary for this paper yet.