Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Real-Time Energy and Cost Efficient Vehicle Route Assignment Neural Recommender System (2110.10887v1)

Published 21 Oct 2021 in cs.LG, cs.AI, cs.CY, and stat.ML

Abstract: This paper presents a neural network recommender system algorithm for assigning vehicles to routes based on energy and cost criteria. In this work, we applied this new approach to efficiently identify the most cost-effective medium and heavy duty truck (MDHDT) powertrain technology, from a total cost of ownership (TCO) perspective, for given trips. We employ a machine learning based approach to efficiently estimate the energy consumption of various candidate vehicles over given routes, defined as sequences of links (road segments), with little information known about internal dynamics, i.e using high level macroscopic route information. A complete recommendation logic is then developed to allow for real-time optimum assignment for each route, subject to the operational constraints of the fleet. We show how this framework can be used to (1) efficiently provide a single trip recommendation with a top-$k$ vehicles star ranking system, and (2) engage in more general assignment problems where $n$ vehicles need to be deployed over $m \leq n$ trips. This new assignment system has been deployed and integrated into the POLARIS Transportation System Simulation Tool for use in research conducted by the Department of Energy's Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium

Citations (7)

Summary

We haven't generated a summary for this paper yet.