Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Real-world Image Super-resolution via Hardware-based Adaptive Degradation Models (2110.10755v1)

Published 20 Oct 2021 in eess.IV and cs.CV

Abstract: Most single image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image pairs, which are simulated by a predetermined degradation operation, e.g., bicubic downsampling. However, these methods only learn the inverse process of the predetermined operation, so they fail to super resolve the real-world LR images; the true formulation deviates from the predetermined operation. To address this problem, we propose a novel supervised method to simulate an unknown degradation process with the inclusion of the prior hardware knowledge of the imaging system. We design an adaptive blurring layer (ABL) in the supervised learning framework to estimate the target LR images. The hyperparameters of the ABL can be adjusted for different imaging hardware. The experiments on the real-world datasets validate that our degradation model can estimate LR images more accurately than the predetermined degradation operation, as well as facilitate existing SR methods to perform reconstructions on real-world LR images more accurately than the conventional approaches.

Summary

We haven't generated a summary for this paper yet.