Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auction Design through Multi-Agent Learning in Peer-to-Peer Energy Trading (2110.10714v1)

Published 20 Oct 2021 in cs.GT, cs.SY, and eess.SY

Abstract: Distributed energy resources (DERs), such as rooftop solar panels, are growing rapidly and are reshaping power systems. To promote DERs, feed-in-tariff (FIT) is usually adopted by utilities to pay DER owners certain fixed rates for supplying energy to the grid. An alternative to FIT is a market-based approach; that is, consumers and DER owners trade energy in an auction-based peer-to-peer (P2P) market, and the rates are determined based on supply and demand. However, the auction complexity and market participants' bounded rationality may invalidate many well-established theories on auction design and hinder market development. To address the challenges, we propose an automated bidding framework based on multi-agent, multi-armed bandit learning for repeated auctions, which aims to minimize each bidder's cumulative regret. Numerical results indicate convergence of such a multi-agent learning game to a steady-state. Being particularly interested in auction designs, we have applied the framework to four different implementations of repeated double-side auctions to compare their market outcomes. While it is difficult to pick a clear winner, $k$-double auction (a variant of uniform pricing auction) and McAfee auction (a variant of Vickrey double-auction) appear to perform well in general, with their respective strengths and weaknesses.

Summary

We haven't generated a summary for this paper yet.